Background & Aims
Methods
Results
Conclusions
Graphical abstract

Keywords
Abbreviations used in this paper:
ALD (alcohol-related liver disease), ALT (alanine aminotransferase), AST (aspartate transaminase), α-SMA (alpha smooth muscle actin), Atg7 (autophagy-related protein 7), Beclin1 (Atg6) (autophagy-related protein 6), BioID (proximity-dependent biotin identification), cDNA (complementary DNA), Co-IP (co-immunoprecipitation), DMEM (Dulbecco’s Modified Eagle Medium), ER (endoplasmic reticulum), EtOH (ethanol diet), FBS (fetal bovine serum), FL (full-length), GO (Gene Ontology), HBSS (Hank’s Balanced Salt Solution), H&E (hematoxylin and eosin), HNF4α (hepatocyte nuclear factor 4 alpha), IL (interleukin), KEGG (Kyoto Encyclopedia of Genes and Genomes), LC-MS/MS (liquid chromatography with tandem mass spectrometry), mTORC1 (mechanistic target of rapamycin complex 1), PBS (phosphate buffered saline), PDI (protein disulfide isomerase), qRT-PCR (real-time quantitative PCR), T-CHO (total cholesterol), TFEB (transcription factor EB), TG (triglyceride), WT (wild-type)Results
Periostin is Significantly Upregulated in Hepatocytes in Response to Alcohol Stimulation in Vivo and in Vitro

Periostin Deficiency Severely Exacerbates ALD in Mice


Supplementation With Periostin in Postn-/- Mouse Livers Attenuates Murine ALD


Periostin Enhances Autophagy by Inhibiting the mTORC1 Pathway in Response to Alcohol Exposure


Periostin Alleviates Murine ALD by activating autophagy and inhibiting the mTORC1 pathway



Proximity-dependent Biotin Identification Technique Identifies PDI as the Interacting Protein of Periostin

Accession | Gene name | Description | Coverage, % | # of Peptides | # Unique |
---|---|---|---|---|---|
A2A8L1 | Chd5 | Chromodomain-helicase-DNA-binding protein 5 | 1 | 1 | 1 |
O08709 | Prdx6 | Peroxiredoxin-6 | 5 | 1 | 1 |
O08788 | Dctn1 | Dynactin subunit 1 | 1 | 1 | 1 |
O09131 | Gsto1 | Glutathione S-transferase omega-1 | 4 | 1 | 1 |
O35350 | Capn1 | Calpain-1 catalytic subunit | 3 | 2 | 2 |
O35640 | Anxa8 | Annexin A8 | 3 | 1 | 1 |
O35887 | Calu | Calumenin | 7 | 2 | 2 |
O54734 | Ddost | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit | 2 | 1 | 1 |
O55143 | Atp2a2 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 | 2 | 1 | 1 |
O70251 | Eef1b | Elongation factor 1-beta | 6 | 1 | 1 |
O70555 | Sprr2d | Small proline-rich protein 2D | 21 | 2 | 2 |
O70559 | Sprr2h | Small proline-rich protein 2H | 17 | 2 | 2 |
O88342 | Wdr1 | WD repeat-containing protein 1 | 2 | 1 | 1 |
O88685 | Psmc3 | 26S proteasome regulatory subunit 6A | 3 | 1 | 1 |
P02535 | Krt10 | Keratin type I cytoskeletal 10 | 29 | 25 | 1 |
P05202 | Got2 | Aspartate aminotransferase mitochondrial | 3 | 1 | 1 |
P07091 | S100a4 | Protein S100-A4 | 17 | 1 | 1 |
P07901 | Hsp90aa1 | Heat shock protein HSP 90-alpha | 20 | 12 | 7 |
P08113 | Hsp90b1 | Endoplasmin | 14 | 10 | 9 |
P09055 | Itgb1 | Integrin beta-1 | 2 | 1 | 1 |
P09103 | P4hb | Protein disulfide-isomerase | 38 | 20 | 20 |
P11531 | Dmd | Dystrophin | 0 | 1 | 1 |
P14211 | Calr | Calreticulin | 9 | 3 | 3 |
P16110 | Lgals3 | Galectin-3 | 9 | 2 | 2 |
P16381 | D1Pas1 | Putative ATP-dependent RNA helicase Pl10 | 17 | 10 | 10 |
P17047 | Lamp2 | Lysosome-associated membrane glycoprotein 2 | 2 | 1 | 1 |
P17225 | Ptbp1 | Polypyrimidine tract-binding protein 1 | 4 | 1 | 1 |
P17879 | Hspa1b | Heat shock 70 kDa protein 1B | 21 | 11 | 4 |
P21107 | Tpm3 | Tropomyosin alpha-3 chain | 15 | 3 | 1 |
P21550 | Eno3 | Beta-enolase | 13 | 3 | 1 |
P24527 | Lta4h | Leukotriene A-4 hydrolase | 3 | 1 | 1 |
P25444 | Rps2 | 40S ribosomal protein S2 | 6 | 2 | 2 |
P29341 | Pabpc1 | Polyadenylate-binding protein 1 | 3 | 1 | 1 |
P30416 | Fkbp4 | Peptidyl-prolyl cis-trans isomerase FKBP4 | 2 | 1 | 1 |
P35278 | Rab5c | Ras-related protein Rab-5C | 5 | 1 | 1 |
P35492 | Hal | Histidine ammonia-lyase | 8 | 4 | 4 |
P35564 | Canx | Calnexin | 2 | 1 | 1 |
P40124 | Cap1 | Adenylyl cyclase-associated protein 1 | 6 | 2 | 2 |
P43277 | Hist1h1d | Histone H1.3 | 17 | 4 | 1 |
P46471 | Psmc2 | 26S proteasome regulatory subunit 7 | 3 | 1 | 1 |
P47738 | Aldh2 | Aldehyde dehydrogenase mitochondrial | 3 | 1 | 1 |
P47753 | Capza1 | F-actin-capping protein subunit alpha-1 | 3 | 1 | 1 |
P47754 | Capza2 | F-actin-capping protein subunit alpha-2 | 3 | 1 | 1 |
P47963 | Rpl13 | 60S ribosomal protein L13 | 10 | 2 | 2 |
P50247 | Ahcy | Adenosylhomocysteinase | 3 | 1 | 1 |
P50446 | Krt6a | Keratin type II cytoskeletal 6A | 41 | 41 | 2 |
P50516 | Atp6v1a | V-type proton ATPase catalytic subunit A | 2 | 1 | 1 |
P50580 | Pa2g4 | Proliferation-associated protein 2G4 | 4 | 1 | 1 |
P51881 | Slc25a5 | ADP/ATP translocase 2 | 7 | 2 | 2 |
P53026 | Rpl10a | 60S ribosomal protein L10a | 4 | 1 | 1 |
P54071 | Idh2 | Isocitrate dehydrogenase [NADP] mitochondrial | 3 | 1 | 1 |
P56399 | Usp5 | Ubiquitin carboxyl-terminal hydrolase 5 | 2 | 1 | 1 |
P56480 | Atp5f1b | ATP synthase subunit beta mitochondrial | 16 | 6 | 6 |
P60867 | Rps20 | 40S ribosomal protein S20 | 13 | 2 | 2 |
P61021 | Rab5b | Ras-related protein Rab-5B | 5 | 1 | 1 |
P61027 | Rab10 | Ras-related protein Rab-10 | 12 | 2 | 2 |
P61089 | Ube2n | Ubiquitin-conjugating enzyme E2 N | 7 | 1 | 1 |
P61358 | Rpl27 | 60S ribosomal protein L27 | 7 | 1 | 1 |
P61971 | Nutf2 | Nuclear transport factor 2 | 6 | 1 | 1 |
P61979 | Hnrnpk | Heterogeneous nuclear ribonucleoprotein K | 15 | 5 | 5 |
P62141 | Ppp1cb | Serine/threonine-protein phosphatase PP1-beta catalytic subunit | 9 | 2 | 2 |
P62242 | Rps8 | 40S ribosomal protein S8 | 6 | 1 | 1 |
P62751 | Rpl23a | 60S ribosomal protein L23a | 8 | 1 | 1 |
P62821 | Rab1A | Ras-related protein Rab-1A | 8 | 1 | 1 |
P62908 | Rps3 | 40S ribosomal protein S3 | 22 | 4 | 4 |
P62911 | Rpl32 | 60S ribosomal protein L32 | 10 | 1 | 1 |
P62918 | Rpl8 | 60S ribosomal protein L8 | 4 | 1 | 1 |
P63168 | Dynll1 | Dynein light chain 1 cytoplasmic | 52 | 4 | 4 |
P63242 | Eif5a | Eukaryotic translation initiation factor 5A-1 | 8 | 1 | 1 |
P63254 | Crip1 | Cysteine-rich protein 1 | 13 | 1 | 1 |
P63323 | Rps12 | 40S ribosomal protein S12 | 24 | 2 | 2 |
P68040 | Rack1 | Receptor of activated protein C kinase 1 | 21 | 7 | 7 |
P68373 | Tuba1c | Tubulin alpha-1C chain | 39 | 12 | 1 |
P70124 | Serpinb5 | Serpin B5 | 2 | 1 | 1 |
P70296 | Pebp1 | Phosphatidylethanolamine-binding protein 1 | 4 | 1 | 1 |
P70419 | Galnt3 | Polypeptide N-acetylgalactosaminyltransferase 3 | 2 | 1 | 1 |
P70670 | Naca | Nascent polypeptide-associated complex subunit alpha muscle-specific form | 1 | 1 | 1 |
P80314 | Cct2 | T-complex protein 1 subunit beta | 2 | 1 | 1 |
P86048 | Rpl10l | 60S ribosomal protein L10-like | 6 | 1 | 1 |
P97315 | Csrp1 | Cysteine and glycine-rich protein 1 | 18 | 2 | 2 |
Q02819 | Nucb1 | Nucleobindin-1 | 19 | 6 | 6 |
Q05816 | Fabp5 | Fatty acid-binding protein 5 | 7 | 1 | 1 |
Q08189 | Tgm3 | Protein-glutamine gamma-glutamyltransferase E | 2 | 1 | 1 |
Q11011 | Npepps | Puromycin-sensitive aminopeptidase | 1 | 1 | 1 |
Q3THE2 | Myl12b | Myosin regulatory light chain 12B | 6 | 1 | 1 |
Q501J6 | Ddx17 | Probable ATP-dependent RNA helicase DDX17 | 4 | 2 | 2 |
Q60930 | Vdac2 | Voltage-dependent anion-selective channel protein 2 | 4 | 1 | 1 |
Q61087 | Labm3 | Laminin subunit beta-3 | 5 | 5 | 5 |
Q61206 | Pafah1b2 | Platelet-activating factor acetylhydrolase IB subunit beta | 4 | 1 | 1 |
Q61414 | Krt15 | Keratin type I cytoskeletal 15 | 12 | 13 | 1 |
Q61425 | Hadh | Hydroxyacyl-coenzyme A dehydrogenase mitochondrial | 4 | 1 | 1 |
Q61598 | Gdi2 | Rab GDP dissociation inhibitor beta | 7 | 2 | 2 |
Q61696 | Hspa1a | Heat shock 70 kDa protein 1A | 21 | 11 | 4 |
Q61753 | Phgdh | D-3-phosphoglycerate dehydrogenase | 4 | 2 | 2 |
Q62009 | Postn | Periostin | 43 | 30 | 30 |
Q62267 | Sprr1b | Cornifin-B | 5 | 1 | 1 |
Q68FD5 | Cltc | Clathrin heavy chain 1 | 4 | 6 | 6 |
Q6PDQ2 | Chd4 | Chromodomain-helicase-DNA-binding protein 4 | 1 | 1 | 1 |
Q6ZWN5 | Rps9 | 40S ribosomal protein S9 | 5 | 1 | 1 |
Q6ZWV3 | Rpl10 | 60S ribosomal protein L10 | 6 | 1 | 1 |
Q7TMM9 | Tubb2a | Tubulin beta-2A chain | 31 | 14 | 1 |
Q7TSV4 | Pgm2 | Phosphoglucomutase-2 | 3 | 1 | 1 |
Q8BGY2 | Eif5a2 | Eukaryotic translation initiation factor 5A-2 | 8 | 1 | 1 |
Q8BI84 | Mia3 | Transport and Golgi organization protein 1 homolog | 1 | 1 | 1 |
Q8BP47 | Nars | Asparagine--tRNA ligase cytoplasmic | 5 | 2 | 2 |
Q8BW94 | Dnah3 | Dynein heavy chain 3 axonemal | 0 | 1 | 1 |
Q8C166 | Cpne1 | Copine-1 | 3 | 1 | 1 |
Q8CIE6 | Copa | Coatomer subunit alpha | 1 | 1 | 1 |
Q8K1K6 | Seripinb10 | Serpin B10 | 3 | 1 | 1 |
Q8R0W0 | Eppk1 | Epiplakin | 1 | 5 | 3 |
Q8R180 | Ero1a | ERO1-like protein alpha | 3 | 1 | 1 |
Q8R2Q0 | Trim29 | Tripartite motif-containing protein 29 | 1 | 1 | 1 |
Q8VDW0 | Ddx39a | ATP-dependent RNA helicase DDX39A | 2 | 1 | 1 |
Q8VI78 | Pla1a | Phospholipase A1 member A | 2 | 1 | 1 |
Q91W90 | Txndc5 | Thioredoxin domain-containing protein 5 | 4 | 1 | 1 |
Q91WC0 | Setd3 | Actin-histidine N-methyltransferase | 2 | 1 | 1 |
Q922R8 | Pdia6 | Protein disulfide-isomerase A6 | 12 | 4 | 4 |
Q93092 | Taldo1 | Transaldolase | 4 | 1 | 1 |
Q99JY9 | Actr3 | Actin-related protein 3 | 11 | 3 | 3 |
Q99K85 | Psat1 | Phosphoserine aminotransferase | 6 | 2 | 2 |
Q99M74 | Krt82 | Keratin type II cuticular Hb2 | 4 | 2 | 1 |
Q99N42 | Tymp | Thymidine phosphorylase | 2 | 1 | 1 |
Q9CPY7 | Lap3 | Cytosol aminopeptidase | 2 | 1 | 1 |
Q9CQD1 | Rab5a | Ras-related protein Rab-5A | 5 | 1 | 1 |
Q9CQV8 | Ywhab | 14-3-3 protein beta/alpha | 16 | 4 | 1 |
Q9CWF2 | Tubb2b | Tubulin beta-2B chain | 31 | 14 | 1 |
Q9CXW4 | Rpl11 | 60S ribosomal protein L11 | 8 | 1 | 1 |
Q9CZU6 | Cs | Citrate synthase mitochondrial | 5 | 2 | 2 |
Q9D0R2 | Tars | Threonine--tRNA ligase cytoplasmic | 1 | 1 | 1 |
Q9D819 | Ppa1 | Inorganic pyrophosphatase | 3 | 1 | 1 |
Q9D8E6 | Rpl4 | 60S ribosomal protein L4 | 7 | 2 | 2 |
Q9D8N0 | Eef1g | Elongation factor 1-gamma | 12 | 5 | 5 |
Q9D952 | Evpl | Envoplakin | 1 | 1 | 1 |
Q9DBP5 | Cmpk1 | UMP-CMP kinase | 5 | 1 | 1 |
Q9JHR7 | Ide | Insulin-degrading enzyme | 5 | 5 | 5 |
Q9JK88 | Serpini2 | Serpin I2 | 4 | 2 | 1 |
Q9JKR6 | Hyou1 | Hypoxia up-regulated protein 1 | 1 | 1 | 1 |
Q9JL62 | Gltp | Glycolipid transfer protein | 6 | 1 | 1 |
Q9JLJ2 | Aldh9a1 | 4-trimethylaminobutyraldehyde dehydrogenase | 3 | 1 | 1 |
Q9JM76 | Arpc3 | Actin-related protein 2/3 complex subunit 3 | 6 | 1 | 1 |
Q9QY23 | Pkp3 | Plakophilin-3 | 1 | 1 | 1 |
Q9QYG0 | Ndrg2 | Protein NDRG2 | 4 | 1 | 1 |
Q9QYJ0 | Dnaja2 | DnaJ homolog subfamily A member 2 | 3 | 1 | 1 |
Q9QYY1 | IL36RN | Interleukin-36 receptor antagonist protein | 14 | 2 | 2 |
Q9QZW0 | Atp11c | Phospholipid-transporting ATPase 11C | 1 | 1 | 1 |
Q9R0N8 | Syt6 | Synaptotagmin-6 | 2 | 1 | 1 |
Q9R1A9 | Trex2 | Three prime repair exonuclease 2 | 5 | 1 | 1 |
Q9R1P4 | Psma1 | Proteasome subunit alpha type-1 | 4 | 1 | 1 |
Q9R269 | Ppl | Periplakin | 2 | 3 | 3 |
Q9Z1N5 | Ddx39b | Spliceosome RNA helicase Ddx39b | 2 | 1 | 1 |
Q9Z1Q5 | Clic1 | Chloride intracellular channel protein 1 | 7 | 2 | 2 |
P14131 | Rps16 | 40S ribosomal protein S16 | 14 | 2 | 2 |
P62281 | Rps11 | 40S ribosomal protein S11 | 18 | 2 | 2 |
- Bechtel T.J.
- Weerapana E.

Periostin-mediated Activation of Autophagy Depends on its Interaction With PDI in Murine ALD


Alcohol-induced Periostin Overexpression is Regulated by TFEB


Discussion
Materials and Methods
Animal Experiments
Cell Lines and Primary Cell Culture
Recombinant Adenoviruses
Clinical Chemistry Measurements
BioID and LC-MS/MS Analysis
Alcohol, Activator, and Inhibitor Treatment
Histological Analysis
Quantitative Polymerase Chain Reaction
Gene | Primer |
---|---|
Postn | Forward primer: CACTACCACTCAGCACTACTC Reverse primer: CTCCAGTCCTCTGCGAAT |
Tfeb | Forward primer: TGTCTAGCAGCCACCTGAA Reverse primer: TGATGTTGAACCTGCGTCTT |
P4hb | Forward primer: TGAACAGACAGCTCCGAAGAT Reverse primer: GCCGTCATAGTCAGATACACTCT |
Il6 | Forward primer: CTGCAAGAGACTTCCATCCAG Reverse primer: AGTGGTATAGACAGGTCTGTTGG |
Il1b | Forward primer: GAAATGCCACCTTTTGACAGTG Reverse primer: TGGATGCTCTCATCAGGACAG |
Tnf | Forward primer: AGGGTCTGGGCCATAGAACT Reverse primer: CCACCACGCTCTTCTGTCTAC |
Ccl2 | Forward primer: TTAAAAACCTGGATCGGAACCAA Reverse primer: GCATTAGCTTCAGATTTACGGGT |
Col1a1 | Forward primer: TGTCCCAACCCCCAAAGAC Reverse primer: GGTCCCTCGACTCCTACATCTTC |
Col6a1 | Forward primer: CACCTGGGCCAGATGAGTGT Reverse primer: CCAGCACGAAGAGGATGTCAA |
Col6a3 | Forward primer: TGATGGCACCTCTCAGGACTCT Reverse primer: TTGTCGGAGCCATCCAAAAG |
Col8a1 | Forward primer: ACTCTGTCAGACTCATTCAGGC Reverse primer: CAAAGGCATGTGAGGGACTTG |
Ppargc1a | Forward primer: CCGATCACCATATTCCAGG Reverse primer: TTCGTGCTCATAGGCTTCA |
Atp6v1h | Forward primer: AAAGAAGTTCCGAGGACAA Reverse primer: GCTTCGTTTCGCATAGTCA |
Ddit3 | Forward primer: GCTGGAAGCCTGGTATGA Reverse primer: GGACGCAGGGTCAAGAGT |
Atf3 | Forward primer: ATTGCTGCTGCCAAGTGT Reverse primer: GTCCGTCCATTCTGAGCC |
Atf4 | Forward primer: AGACACCGGCAAGGAGGA Reverse primer: GGCATGGTTTCCAGGTCA |
Cpt1a | Forward primer: CCAGGCTACAGTGGGACATT Reverse primer: GAACTTGCCCATGTCCTTGT |
Acadm | Forward primer: AGGGTTTAGTTTTGAGTTGACGG Reverse primer: CCCCGCTTTTGTCATATTCCG |
Ppara | Forward primer: ACGGCAATGGCTTTATCAC Reverse primer: CCCTCCTGCAACTTCTCAA |
Acaca | Forward primer: ATGGGCGGAATGGTCTCTTTC Reverse primer: TGGGGACCTTGTCTTCATCAT |
Acacb | Forward primer: CCCAGCCGAGTTTGTCACT Reverse primer: GGCGATGAGCACCTTCTCTA |
Dgat2 | Forward primer: GCGCTACTTCCGAGACTACTT Reverse primer: GGGCCTTATGCCAGGAAACT |
Fasn | Forward primer: CATGACCTCGTGATGAACGTG Reverse primer: GGTGAGGACGTTTACAAAGGC |
Scd1 | Forward primer: TTCTTGCGATACACTCTGGTGC Reverse primer: CGGGATTGAATGTTCTTGTCGT |
Gapdh | Forward primer: TGTGTCCGTCGTGGATCTGA Reverse primer: TTGCTGTTGAAGTCGCAGGAG |
Immunofluorescence, Immunohistochemistry, and Western Blot Analyses
Immunofluorescence for Lipid
Plasmids and Transfection
Gene name | Vector | Primer sequence 5' | Primer sequence 3' |
---|---|---|---|
Postn | MCS-BioID2-HA | CTAGCTAGCATGGTTCCTCTCCTGCCCTT | CGGGATCCCTGAGAACGGCCTTCTCTTGA |
Postn | pCDH-CMV-EF1-GFP | ACCTCCATAGAAGATTCTAGAATGGTTCCTCTCCTGCCCTT | GATCGCAGATCCTTCGCGGCCGCTCACTGAGAACGGCCTTCTCTT |
P4hb | pLV-tagII | CATACTAGAGAATTCGGATCCATGCTGAGCCGTGCTTTGC | GGGGGAGGGAGAGGGGCTAGCCAGTTCATCCTTCACAGCTTTCTG |
P4hb D1 | pLV-tagII | CATACTAGAGAATTCGGATCCCTGGAGGAGGAGGACAACGTC | GGGGGAGGGAGAGGGGCTAGCCAGTTCATCCTTCACAGCTTTCTG |
P4hb D2 | pLV-tagII | CATACTAGAGAATTCGGATCCGGCCCAGCAGCTACAACCC | GGGGGAGGGAGAGGGGCTAGCCAGTTCATCCTTCACAGCTTTCTG |
P4hb D3 | pLV-tagII | CATACTAGAGAATTCGGATCCCAGCTGCCTTTGGTCATCGA | GGGGGAGGGAGAGGGGCTAGCCAGTTCATCCTTCACAGCTTTCTG |
P4hb D4 | pLV-tagII | CATACTAGAGAATTCGGATCCGAGGGCAAGATCAAGCCCC | GGGGGAGGGAGAGGGGCTAGCCAGTTCATCCTTCACAGCTTTCTG |
TFEB | pCMV5 | CGGGGTACCATGGCGTCACGCATAGGGTT | CGGGATCCTCACAGCACATCGCCCTCCT |
Postn promotor | pGL3-basic | CGAGCTCTTACGCGTGCTAGCACCCTTGATACTTATTACACAAGTCTATATCT | ACTTAGATCGCAGATCTCGAGCAGAGTTTAAAAGTAACTTAAATGCTTCAA |
Postn Promotor D1 | pGL3-basic | CGAGCTCTTACGCGTGCTAGCTTCCAATATTGGCTGCTTTTCA | ACTTAGATCGCAGATCTCGAGCAGAGTTTAAAAGTAACTTAAATGCTTCAA |
Postn Promotor D2 | pGL3-basic | CGAGCTCTTACGCGTGCTAGCTCTTCAGCAAGTTAGAATTCTTATTTCA | ACTTAGATCGCAGATCTCGAGCAGAGTTTAAAAGTAACTTAAATGCTTCAA |
Postn Promotor D3 | pGL3-basic | CTAGCTAGCTGTCTAACTGGTCTAGAGTTGAA | CCGCTCGAGCTGCATCAACCTGAGAGTCT |
Postn Promotor D4 | pGL3-basic | CTAGCTAGCAATCAGAAGAATCATTTTGG | CCGCTCGAGCTGCATCAACCTGAGAGTCT |
Postn Promotor D5 | pGL3-basic | CTAGCTAGCTCAGACTCGCATCTACCTTT | CCGCTCGAGCTGCATCAACCTGAGAGTCT |
Postn Promotor mutant | pGL3-basic | TCTTTACCCTAGTTAGAGAAA | AACTAGGGTAAAGATATTTCA |
Postn Promotor D3 mutant | pGL3-basic | TGAAATATCTTTACCCTAGTTAGAGAAAATTTTA | TCTAACTAGGGTAAAGATATTTCAATGCTGTTTGC |
Luciferase Reporter Assay
Co-IP Assay
Bioinformatics Analysis
Statistical Analysis
CRediT Authorship Contributions
References
- Trends in mortality from extrahepatic complications in patients with chronic liver disease, from 2007 through 2017.Gastroenterology. 2019; 157: 1055-1066.e11
- Alcoholic liver disease.Nat Rev Dis Primers. 2018; 4: 16
- Alcoholic liver disease: mechanisms of injury and targeted treatment.Nat Rev Gastroenterol Hepatol. 2015; 12: 231-242
- Alcoholic liver disease in Asia, Europe, and North America.Gastroenterology. 2016; 150: 1786-1797
- Alcoholic liver disease: pathogenesis and new therapeutic targets.Gastroenterology. 2011; 141: 1572-1585
- The role of periostin in tissue remodeling across health and disease.Cell Mol Life Sci. 2014; 71: 1279-1288
- Periostin deficiency attenuates lipopolysaccharide- and obesity-induced adipose tissue fibrosis.FEBS Lett. 2021; 595: 2099-2112
- Periostin deficiency reduces diethylnitrosamine-induced liver cancer in mice by decreasing hepatic stellate cell activation and cancer cell proliferation.J Pathol. 2021; 255: 212-223
- A critical role of periostin in B-cell acute lymphoblastic leukemia.Leukemia. 2017; 31: 1835-1837
- Matricellular protein periostin contributes to hepatic inflammation and fibrosis.Am J Pathol. 2015; 185: 786-797
- The multifaceted role of periostin in priming the tumor microenvironments for tumor progression.Cell Mol Life Sci. 2017; 74: 4287-4291
- Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation.Cell Rep. 2020; 30: 793-806.e6
- Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARalpha.J Clin Invest. 2014; 124: 3501-3513
- Deficiency of periostin protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis.J Hepatol. 2015; 62: 495-497
- Alcohol use in patients with chronic liver disease.N Engl J Med. 2018; 379: 1251-1261
- The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice.J Hepatol. 2019; 71: 960-969
- Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice.Gastroenterology. 2010; 139: 1740-1752
- Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity.Am J Pathol. 2013; 183: 1815-1825
- Autophagy in liver diseases: a review.Mol Aspects Med. 2021; 82: 100973
- Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA 155 in alcoholic liver disease.Hepatology. 2019; 70: 2123-2141
- SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy.J Hepatol. 2018; 69: 129-141
- Knockdown of periostin attenuates 5/6 nephrectomy-induced intrarenal renin-angiotensin system activation, fibrosis, and inflammation in rats.J Cell Physiol. 2019; 234: 22857-22873
- Periostin regulates autophagy through integrin alpha5beta1 or alpha6beta4 and an AKT-dependent pathway in colorectal cancer cell migration.J Cell Mol Med. 2020; 24: 12421-12432
- TFEB links autophagy to lysosomal biogenesis.Science. 2011; 332: 1429-1433
- A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB.EMBO J. 2012; 31: 1095-1108
- Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice.Gastroenterology. 2018; 155: 865-879.e12
- Mouse model of chronic and binge ethanol feeding (the NIAAA model).Nat Protoc. 2013; 8: 627-637
- Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level.Cell Res. 2020; 30: 1109-1126
- DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease.Hepatology. 2018; 68: 496-514
- The MTORC1-mediated autophagy is regulated by the FBXW7-SHOC2-RPTOR axis.Autophagy. 2019; 15: 1470-1472
- From structure to redox: the diverse functional roles of disulfides and implications in disease.Proteomics. 2017; 17https://doi.org/10.1002/pmic.201600391
- Introductory review: periostin-gene and protein structure.Cell Mol Life Sci. 2017; 74: 4259-4268
- Bone marrow mesenchymal stromal cell-derived periostin promotes B-ALL progression by modulating CCL2 in leukemia cells.Cell Rep. 2019; 26: 1533-1543.e4
- Interactions between cancer stem cells and their niche govern metastatic colonization.Nature. 2011; 481: 85-89
- Periostin: a new extracellular regulator of obesity-induced hepatosteatosis.Cell Metab. 2014; 20: 562-564
- Deficiency of periostin impairs liver regeneration in mice after partial hepatectomy.Matrix Biol. 2018; 66: 81-92
- Autophagy and lipid droplets in the liver.Annu Rev Nutr. 2015; 35: 215-237
- A proximity-dependent biotinylation map of a human cell.Nature. 2021; 595: 120-124
- An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations.Nat Commun. 2018; 9: 1188
- A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells.J Cell Biol. 2012; 196: 801-810
- Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress.EMBO J. 2020; 39e103841
- Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress.Redox Biol. 2019; 25101047
- A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis.J Gastroenterol. 2015; 50: 984-995
- The effect of 17-β-estradiol on cellular proliferation mediated by protein disulfide isomerase and the mammalian target of rapamycin (mTOR).Microscopy Microanalysis. 2013; 19: 286-287
- Autophagy—a key player in cellular and body metabolism.Nat Rev Endocrinol. 2014; 10: 322-337
- Protocol for primary mouse hepatocyte isolation.STAR Protoc. 2020; 1: 100086
- A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface.Cell. 2015; 163: 1484-1499
- In-depth proteomic profiling of the Singapore grouper iridovirus virion.Arch Virol. 2019; 164: 1889-1895
Article info
Publication history
Publication stage
In Press Journal Pre-ProofFootnotes
Conflicts of interest The authors disclose no conflicts.
Funding This research was supported by the National Natural Science Foundation of China (82170600, 82070607, 81871679, 82172932, and 81972748) and the Natural Science Foundation of Fujian Province of China (2022J01015, 2019J02002, and 2021J05010).
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy