Autotaxin, PPARs, and FGF21: An Eye Opener for Progressive Liver Disease?

Autotaxin (ecto-nucleotide pyrophosphatase/phosphodiesterase 2) and its product lysophosphatidic acid have attracted increasing attention on the field of hepatology during the past years after other medical research areas such as cardiology and endocrinology. Still, numerous physiological and pathophysiological roles of autotaxin and lysophosphatidic acid in liver pathology including inflammation, proliferation, fibrosis, cirrhosis, and carcinogenesis are far from being explored. Autotaxin is formed in various organs, particularly in adipose tissue, which under healthy conditions dominates autotaxin serum levels and activity. Notably, up-regulation of hepatic autotaxin expression and secretion into blood (but not bile) has been observed under various pathologic conditions of the liver including nonalcoholic fatty liver disease and chronic cholestatic diseases such as primary biliary cholangitis or primary sclerosing cholangitis, and has been shown to be associated with disease severity and correlated inversely with prognosis.

Autotaxin in plasma forms lysophosphatidic acid in its active site by splitting choline from lysophosphatidylcholine, a phospholipid that is available at abundant (approximately 500 μmol/L) plasma levels and is derived from the major human phospholipid, phosphatidylcholine. Formed lysophosphatidic acid subsequently can bind in a hydrophobic tunnel near the active site and this allows prolonged association of this short-lived agonist with the protein. Although the association of lysophosphatidic acid with autotaxin stimulates the activity, association of bile acids and bile acid–like molecules with the hydrophobic tunnel of autotaxin inhibits its activity. By binding of autotaxin to integrins on the plasma membrane of cells, the enzyme releases lysophosphatidic acid in close proximity to G-protein–coupled lysophosphatidic acid receptors (types 1–6).

Intracellular Erk phosphorylation/activation is a common early event after binding of lysophosphatidic acid to its receptor.

In the present issue of *Cellular and Molecular Gastroenterology and Hepatology*, Qiu et al provide an excellent work. Certainly, a moment of caution has to be included for the generalizability of the described findings because they have been obtained in different models, starting with findings in severely obese people, continuing with mouse models of nonalcoholic fatty liver disease (always controversially discussed), and finishing with an established human liver carcinoma cell line. Still, this article can be praised as a masterpiece of translational research. It remains open whether these findings can be translated to other autotaxin–lysophosphatidic acid–related topics in liver research.

References


Correspondence
Address correspondence to: Ulrich Beuers, MD, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. e-mail: u.h.beuers@amsterdamumc.nl.

Conflicts of interest
The authors disclose no conflicts.

© 2022 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jcmgh.2022.08.009

2352-345X