Background & Aims
Methods
Results
Conclusions
Keywords
Abbreviations used in this paper:
AAV (adeno-associated viruses), ALT (alanine aminotransferase), AST (aspartate aminotransferase), ATX (autotaxin), BMI (body mass index), CDAHF60 (choline-deficient), L-amino acid-defined (high-fat diet (60% kcal)), DMEM (Dulbecco’s modified Eagle medium), ERK (extracellular signal-regulated kinase), FAO (fatty acid oxidation), FBS (fetal bovine serum), FFA (free fatty acid), FGF21 (fibroblast growth factor 21), HFD (high-fat diet), INT (iodonitrotetrazolium), KD (knock-down), KO (knockout), LPA (lysophosphatidic acid), LysoPLD (lysophospholipase D), MDM2 (mouse double minute 2), mRNA (messenger RNA), NAFLD (nonalcoholic fatty liver disease), NASH (nonalcoholic steatohepatitis), PCR (polymerase chain reaction), PEI (polyethylenimine), PPARα (peroxisome proliferator-activated receptor α), rhATX (recombinant human autotaxin), rmATX (recombinant mouse autotaxin), shRNA (short hairpin RNA), STC (standard chow diet), WT (wild-type)- Ferry G.
- Tellier E.
- Try A.
- Gres S.
- Naime I.
- Simon M.F.
- Rodriguez M.
- Boucher J.
- Tack I.
- Gesta S.
- Chomarat P.
- Dieu M.
- Raes M.
- Galizzi J.P.
- Valet P.
- Boutin J.A.
- Saulnier-Blache J.S.
- Ferry G.
- Tellier E.
- Try A.
- Gres S.
- Naime I.
- Simon M.F.
- Rodriguez M.
- Boucher J.
- Tack I.
- Gesta S.
- Chomarat P.
- Dieu M.
- Raes M.
- Galizzi J.P.
- Valet P.
- Boutin J.A.
- Saulnier-Blache J.S.
- Watanabe N.
- Ikeda H.
- Nakamura K.
- Ohkawa R.
- Kume Y.
- Aoki J.
- Hama K.
- Okudaira S.
- Tanaka M.
- Tomiya T.
- Yanase M.
- Tejima K.
- Nishikawa T.
- Arai M.
- Arai H.
- Omata M.
- Fujiwara K.
- Yatomi Y.
- Kondo M.
- Ishizawa T.
- Enooku K.
- Tokuhara Y.
- Ohkawa R.
- Uranbileg B.
- Nakagawa H.
- Tateishi R.
- Yoshida H.
- Kokudo N.
- Koike K.
- Yatomi Y.
- Ikeda H.
Results
Serum Autotaxin Levels Are Closely Associated With Abnormal Liver Function and NAFLD Severity in Obese Individuals
Parameters | Normal (n = 14) | Steatosis (n = 31) | B. NASH (n = 62) | NASH (n = 44) | P value |
---|---|---|---|---|---|
Age, y | 32.61 ± 2.82 | 31.64 ± 1.36 | 30.23 ± 0.91 | 28.90 ±1.14 | .303 |
Sex, male:female | 4:10 | 12:19 | 29:33 | 21:23 | .000 |
BMI, kg/m2 | 33.38 ± 1.62 | 39.77 ± 1.61 | 40.52 ± 0.92 | 42.34 ± 1.19 | .002 |
Neck circumference, cm | 38.43 ± 1.02 | 42.41 ± 0.77 | 43.10 ± 0.57 | 44.19 ± 0.72 | .000 |
Waist circumference, cm | 106.36 ± 3.14 | 124.35 ± 3.15 | 123.70 ± 1.77 | 128.44 ± 2.55 | .000 |
Hip circumference, cm | 115.05 ± 2.95 | 125.78 ± 2.93 | 125.24 ± 1.54 | 129.94 ± 2.13 | .003 |
C-peptide, ng/mL | 2.22 ± 0.23 | 3.38 ± 0.16 | 3.79 ± 0.12 | 4.58 ± 0.23 | .000 |
Glucose, mmol/L | 5.27 ± 0.23 | 6.45 ± 0.58 | 6.55 ± 0.35 | 6.82 ± 0.36 | .274 |
HbA1c, % | 5.50 ± 0.20 | 6.02 ± 0.19 | 6.30 ± 0.19 | 6.54 ± 0.20 | .061 |
Insulin, mU/L | 13.21 ± 1.65 | 19.91 ± 1.59 | 22.41 ± 1.55 | 35.09 ± 4.91 | .000 |
HOMA-IR | 3.08 ± 0.42 | 5.49 ± 0.54 | 6.63 ± 0.57 | 11.02 ± 2.15 | .003 |
HOMA-B | 1.69 ± 0.17 | 2.04 ± 0.21 | 2.16 ± 0.17 | 2.83 ± 0.26 | .012 |
ALT, U/L | 22.86 ± 2.29 | 49.99 ± 8.22 | 69.34 ± 6.67 | 77.15 ± 8.75 | .001 |
AST, U/L | 19.73 ± 1.91 | 30.34 ± 3.60 | 40.63 ± 3.27 | 51.98 ± 5.93 | .000 |
Adenosine deaminase, U/L | 12.17 ± 0.70 | 14.02 ± 0.87 | 15.12 ± 0.52 | 17.10 ± 0.70 | .000 |
TCHOL, mg/dL | 4.82 ± 0.17 | 4.98 ± 0.18 | 5.14 ± 0.12 | 5.17 ± 0.16 | .524 |
HDL-C, mg/dL | 1.09 ± 0.05 | 1.08 ± 0.05 | 1.02 ± 0.02 | 0.97 ± 0.23 | .114 |
LDL-C, mg/dL | 2.97 ± 0.12 | 2.95 ± 0.13 | 3.19 ± 0.09 | 3.07 ± 0.12 | .411 |
Triglyceride, mg/dL | 1.41 ± 0.11 | 2.77 ± 1.19 | 2.30 ± 0.20 | 3.02 ± 0.55 | .437 |
Ferritin, mg/L | 88.86 ± 29.29 | 164.99 ± 29.85 | 180.97 ± 22.17 | 202.24 ± 24.91 | .069 |
Total bilirubin, U/L | 10.45 ± 1.01 | 11.98 ± 1.02 | 13.31 ± 0.79 | 14.58 ± 0.71 | .037 |
Direct bilirubin, U/L | 2.96 ± 0.92 | 2.37 ± 0.20 | 3.16 ± 0.22 | 3.60 ± 0.22 | .055 |
Lipoprotein a, mg/dL | 194.12 ± 75.35 | 188.66 ± 45.74 | 187.43 ± 29.67 | 91.05 ± 14.62 | .000 |
Apolipoprotein B, g/L | 0.92 ± 0.04 | 0.98 ± 0.03 | 1.09 ± 0.23 | 1.05 ± 0.04 | .016 |
Lactate dehydrogenase, U/L | 176.40 ± 10.08 | 202.93 ± 9.91 | 212.54 ± 6.10 | 222.89 ± 9.36 | .024 |

Severity of pathohistology | Pseudo R | P value |
---|---|---|
Steatosis | 0.318 | .001 |
Inflammation | 0.353 | .000 |
Ballooning | 0.297 | .003 |
Fibrosis | 0.657 | .252 |
Histology diagnosis (normal liver, simple steatosis, borderline NASH, and NASH) | 0.383 | .000 |
Liver But Not Adipose Tissue Contributes to Increased Circulating Autotaxin in Mouse Models With NAFLD
- Ferry G.
- Tellier E.
- Try A.
- Gres S.
- Naime I.
- Simon M.F.
- Rodriguez M.
- Boucher J.
- Tack I.
- Gesta S.
- Chomarat P.
- Dieu M.
- Raes M.
- Galizzi J.P.
- Valet P.
- Boutin J.A.
- Saulnier-Blache J.S.

Knock-Down of Hepatic Autotaxin Expression Alleviates NAFLD by Increasing Fatty Acid Oxidation in Obese Mice


Treatment With Anti-Autotaxin Neutralizing Antibody Potently Ameliorates Hepatic Steatosis and Increases Hepatic FGF21 in Obese Mice



Autotaxin Inhibits Hepatic FGF21 Production Through LPA-Induced ERK Activation and Peroxisome Proliferator-Activated Receptor α Inhibition
- Gierse J.
- Thorarensen A.
- Beltey K.
- Bradshaw-Pierce E.
- Cortes-Burgos L.
- Hall T.
- Johnston A.
- Murphy M.
- Nemirovskiy O.
- Ogawa S.
- Pegg L.
- Pelc M.
- Prinsen M.
- Schnute M.
- Wendling J.
- Wene S.
- Weinberg R.
- Wittwer A.
- Zweifel B.
- Masferrer J.
- Ohta H.
- Sato K.
- Murata N.
- Damirin A.
- Malchinkhuu E.
- Kon J.
- Kimura T.
- Tobo M.
- Yamazaki Y.
- Watanabe T.
- Yagi M.
- Sato M.
- Suzuki R.
- Murooka H.
- Sakai T.
- Nishitoba T.
- Im D.S.
- Nochi H.
- Tamoto K.
- Tomura H.
- Okajima F.
- Juge-Aubry C.E.
- Hammar E.
- Siegrist-Kaiser C.
- Pernin A.
- Takeshita A.
- Chin W.W.
- Burger A.G.
- Meier C.A.
- Juge-Aubry C.E.
- Hammar E.
- Siegrist-Kaiser C.
- Pernin A.
- Takeshita A.
- Chin W.W.
- Burger A.G.
- Meier C.A.
FGF21 Is an Obligatory Mediator for the Therapeutic Benefits of Anti-ATX Antibody Against Steatosis, NASH, and Fibrosis
- Ye D.
- Wang Y.
- Li H.
- Jia W.
- Man K.
- Lo C.M.
- Wang Y.
- Lam K.S.
- Xu A.



Discussion

- Ye D.
- Wang Y.
- Li H.
- Jia W.
- Man K.
- Lo C.M.
- Wang Y.
- Lam K.S.
- Xu A.
- Fisher F.M.
- Chui P.C.
- Nasser I.A.
- Popov Y.
- Cunniff J.C.
- Lundasen T.
- Kharitonenkov A.
- Schuppan D.
- Flier J.S.
- Maratos-Flier E.
- Ye D.
- Wang Y.
- Li H.
- Jia W.
- Man K.
- Lo C.M.
- Wang Y.
- Lam K.S.
- Xu A.
- Fisher F.M.
- Chui P.C.
- Nasser I.A.
- Popov Y.
- Cunniff J.C.
- Lundasen T.
- Kharitonenkov A.
- Schuppan D.
- Flier J.S.
- Maratos-Flier E.
- Juge-Aubry C.E.
- Hammar E.
- Siegrist-Kaiser C.
- Pernin A.
- Takeshita A.
- Chin W.W.
- Burger A.G.
- Meier C.A.
- Montagner A.
- Polizzi A.
- Fouché E.
- Ducheix S.
- Lippi Y.
- Lasserre F.
- Barquissau V.
- Régnier M.
- Lukowicz C.
- Benhamed F.
- Iroz A.
- Bertrand-Michel J.
- Al Saati T.
- Cano P.
- Mselli-Lakhal L.
- Mithieux G.
- Rajas F.
- Lagarrigue S.
- Pineau T.
- Loiseau N.
- Postic C.
- Langin D.
- Wahli W.
- Guillou H.
- Song J.
- Clair T.
- Noh J.H.
- Eun J.W.
- Ryu S.Y.
- Lee S.N.
- Ahn Y.M.
- Kim S.Y.
- Lee S.H.
- Park W.S.
- Yoo N.J.
- Lee J.Y.
- Nam S.W.
Methods
Study Approval
Clinical Studies
Animal Experiments
Histologic Analysis and Oil Red O Staining
- Wu X.
- Shu L.
- Zhang Z.
- Li J.
- Zong J.
- Cheong L.Y.
- Ye D.
- Lam K.S.L.
- Song E.
- Wang C.
- Xu A.
- Hoo R.L.C.
Immunoblot Analysis and Real-Time PCR
Gene name | Kind | Primer sequences, 5'-3' | Gene name | Kind | Primer sequences, 5'-3' |
---|---|---|---|---|---|
Murine | Forward | CATTTATTGGTGGAACGCAGA | Murine | Forward | GCATCCACGAAACCACCTA |
Enpp2 | Reverse | CTACAAAAACAGTCTGCATGC | Acta2 | Reverse | CACGAGTAACAAATCAAAGC |
Murine | Forward | CTGGGGGTCTACCAAGCATA | Murine | Forward | GACTGCGAGGAGGACCAAAA |
Fgf21 | Reverse | CACCCAGGATTTGAATGACC | Fgf15 | Reverse | CAGCCCGTATATCTTGCCGT |
Murine | Forward | ACCTTCTACAATGAGCTGCG | Murine | Forward | CCAGTGTCATTCCACCAGA |
β-actin | Reverse | CTGGATGGCTACGTACATGG | Fetuin-A | Reverse | CGCAGCTATCACAAACTCCA |
Murine | Forward | TAACTTCCTCACTCGAAGCCA | Murine | Forward | AGCACCAAGAACTACTCCCC |
Acox-1 | Reverse | AGTTCCATGACCCATCTCTGTC | Angptl3 | Reverse | ATAAACGGCAGAGCAGTCGG |
Murine | Forward | CAGAGGATGGACACTGTAAAGG | Murine | Forward | AGCTCATTGGCTTGACTCCC |
Cpt-1α | Reverse | CGGCACTTCTTGATCAAGCC | Angptl4 | Reverse | GAAGTCCACAGAGCCGTTCA |
Murine | Forward | CTTGCTTGGCATCAACATCGCAGA | Murine | Forward | ACTACGACAGCTTCTCCTTG |
Lcad | Reverse | ATTGGAGTACGCTTGCTCTTCCCA | Angptl6 | Reverse | AGTGCTGAAAGGTTTGTCAT |
Murine | Forward | ACCAAAGCTTGGATCACCAACTCC | Murine | Forward | AGGCTCTGTGTGGATGGACT |
Scad | Reverse | AACCAGGAAGGCACTGATACCCTT | Fgl1 | Reverse | CCAACCTTCCCTTCCCATCA |
Murine | Forward | GGATGACGGAGCCAATG | Murine | Forward | GAGGCCCCTTATCATTCCGC |
Mcad | Reverse | GGGTGTCGGCTTCCACAATG | Dpp4 | Reverse | ACCCCACTGTTGTTAGGATGG |
Murine | Forward | TGCTATCGGGGTGTTAATGA | Murine | Forward | GGCCAGTTCACTCTGGGAAA |
Scd-1 | Reverse | TCTTGTGGCATGGTTAATCCTA | Lcn2 | Reverse | TGGCGAACTGGTTGTAGTCC |
Murine | Forward | GGAGGTGGTGATAGCCGGTAT | Murine | Forward | CCTCTAATGGCGTGGTCTCG |
Fasn | Reverse | TGGGTAATCCATAGAGCCCAG | Apelin | Reverse | GTCTCCAAGGGCAGTCCAAA |
Murine | Forward | AGATGACGTGGCAAAGAACAG | Murine | Forward | CTATGCCACCTTGGTCACCT |
Cd36 | Reverse | CCTTGGCTAGATAACGAACTCTG | Leptin | Reverse | ACCAAACCAAGCATTTTTGC |
Murine | Forward | CCAATCGACTCACGGGTTCA | Murine | Forward | AAGTGGGAGTGGGCTTTGC |
Ldlr | Reverse | ACAGTGTCGACTTCTCTAGGC | Fabp4 | Reverse | TGGTGACCAAATCCCCATTT |
Murine | Forward | GTCCCCAAAGGGATGAGAAGT | Murine | Forward | GGAGAGAAAGGAGATGCAGGT |
Tnf-α | Reverse | GCTCCTCCACTTGGTGGTTT | Adipoq | Reverse | CTTTCCTGCCAGGGGTTC |
Murine | Forward | GCAACTGTTCCTGAACTCAACT | human | Forward | ATGCCTGAATGACTCCACTGTT |
Il1b | Reverse | ATCTTTTGGGGTCCGTCAACT | ENPP2 | Reverse | AGGACTAAATGTGGCAACTGTG |
Murine | Forward | TTTCTAGCCACACCAGGCAGATGA | human | Forward | ATCGCTCCACTTTGACCCTG |
Timp1 | Reverse | GGTTTGCTGGGAAGGCATTTGAGT | FGF21 | Reverse | GGGCTTCGGACTGGTAAACA |
Murine | Forward | TTCCCTTCCTTTCTCGCCAC | human | Forward | GTCTTCCCCTCCATCGTG |
Enpp2-shRNA | Reverse | AGCCCGAGATAGGGTTGAGT | Beta-actin | Reverse | GTACTTCAGGGTGAGGATGC |
Murine | Forward | GAAACCCGAGGTATGCTTGA | human | Forward | CCGGAGAGATTCGGAGATGC |
Col1a1 | Reverse | GACCAGGAGGACCAGGAAGT | VLCAD | Reverse | TCAGAGGGGTGGGAATCTGA |
Murine | Forward | CGAGGTGACAGAGACCACAA | human | Forward | AGAAGCTGTCACCACAGTAGC |
Fibronectin | Reverse | CTGGAGTCAAGCCAGACACA | PPARa | Reverse | TGAAAGCGTGTCCGTGATGA |
Liver Fractionation
Biochemical and Immunologic Analyses
LysoPLD Activity Assay
Production, Purification, and Validation of Anti-Autotaxin Neutralizing Antibody
Cell Culture and Luciferase Reporter Assay
Generation and Titration of AAVs
Statistics
CRediT Authorship Contributions
References
- New trends on obesity and NAFLD in Asia.J Hepatol. 2017; 67: 862-873
- Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.Nat Rev Gastroenterol Hepatol. 2018; 15: 11-20
- Evolving role for pharmacotherapy in NAFLD/NASH.Clin Transl Sci. 2021; 14: 11-19
- Mechanisms of NAFLD development and therapeutic strategies.Nat Med. 2018; 24: 908-922
- MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology. 2020; 158: 1999-2014.e1
- Hepatokines and adipokines in NASH-related hepatocellular carcinoma.J Hepatol. 2021; 74: 442-457
- Adipokines in nonalcoholic fatty liver disease.Metabolism. 2016; 65: 1062-1079
- The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic.Nat Rev Endocrinol. 2020; 16: 654-667
- Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity.J Biol Chem. 2003; 278: 18162-18169
- Involvement of autotaxin/lysophosphatidic acid signaling in obesity and impaired glucose homeostasis.Biochimie. 2014; 96: 140-143
- Autotaxin (ATX): a multi-functional and multi-modular protein possessing enzymatic lysoPLD activity and matricellular properties.Biochim Biophys Acta. 2008; 1781: 525-530
- LPA receptor signaling: pharmacology, physiology, and pathophysiology.J Lipid Res. 2014; 55: 1192-1214
- Lysophospholipid receptors in drug discovery.Exp Cell Res. 2015; 333: 171-177
- Serum autotaxin is a marker of the severity of liver injury and overall survival in patients with cholestatic liver diseases.Sci Rep. 2016; 630847
- Selective inhibition of autotaxin is efficacious in mouse models of liver fibrosis.J Pharmacol Exp Ther. 2017; 360: 1-13
- Hepatocyte autotaxin expression promotes liver fibrosis and cancer.Hepatology. 2017; 65: 1369-1383
- Adipose-derived autotaxin regulates inflammation and steatosis associated with diet-induced obesity.PLoS One. 2019; 14e0208099
- ENPP2 contributes to adipose tissue expansion and insulin resistance in diet-induced obesity.Diabetes. 2014; 63: 4154-4164
- Autotaxin and its product lysophosphatidic acid suppress brown adipose differentiation and promote diet-induced obesity in mice.Mol Endocrinol. 2012; 26: 786-797
- Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid.J Lipid Res. 2011; 52: 1247-1255
- Serum autotaxin/ENPP2 correlates with insulin resistance in older humans with obesity.Obesity. 2015; 23: 2371-2376
- Autotaxin and lysophosphatidic acid in the blood in patients of viral hepatitis.J Clin Virol. 2006; 36 (S171-S)
- Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C.J Clin Gastroenterol. 2007; 41: 616-623
- Increased serum autotaxin levels in hepatocellular carcinoma patients were caused by background liver fibrosis but not by carcinoma.Clin Chim Acta. 2014; 433: 128-134
- Performance of autotaxin as a serum marker for liver fibrosis.Ann Clin Biochem. 2018; 55: 469-477
- Proteomics based identification of autotaxin as an anti-hepatitis B virus factor and a promoter of hepatoma cell invasion and migration.Cell Physiol Biochem. 2018; 45: 744-760
- Serum autotaxin is independently associated with hepatic steatosis in women with severe obesity.Obesity. 2015; 23: 965-972
- Clinical validation of the FLIP algorithm and the SAF score in patients with non-alcoholic fatty liver disease.J Hepatol. 2020; 72: 828-838
- Depot-specific regulation of autotaxin with obesity in human adipose tissue.J Physiol Biochem. 2012; 68: 635-644
- The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic beta-cells.Nat Commun. 2016; 711740
- The dysfunctional MDM2-p53 axis in adipocytes contributes to aging-related metabolic complications by induction of lipodystrophy.Diabetes. 2018; 67: 2397-2409
- The bulk of autotaxin activity is dispensable for adult mouse life.PLoS One. 2015; 10e0143083
- Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice.Circulation. 2015; 131: 1861-1871
- A novel autotaxin inhibitor reduces lysophosphatidic acid levels in plasma and the site of inflammation.J Pharmacol Exp Ther. 2010; 334: 310-317
- Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors.Mol Pharmacol. 2003; 64: 994-1005
- Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies.Signal Transduct Target Ther. 2021; 6: 45
- PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α.Future Cardiol. 2017; 13: 259-278
- PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD.Nat Rev Endocrinol. 2017; 13: 36-49
- ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand.Proc Natl Acad Sci U S A. 1998; 95: 4333-4337
- Pseudomonas aeruginosa and sPLA2 IB stimulate ABCA1-mediated phospholipid efflux via ERK-activation of PPARalpha-RXR.Biochem J. 2007; 403: 409-420
- Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain.J Biol Chem. 1999; 274: 10505-10510
- Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth.J Clin Invest. 2000; 105: 1723-1730
- Targeting FGF21 for the treatment of nonalcoholic steatohepatitis.Trends Pharmacol Sci. 2020; 41: 199-208
- Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1alpha-mediated antioxidant capacity in mice.Hepatology. 2014; 60: 977-989
- Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues.Cell Rep. 2019; 26 (e4): 2738-2752
- FGF19 and FGF21: in NASH we trust.Mol Metab. 2021; 46101152
- The pharmacodynamic and differential gene expression analysis of PPAR α/δ agonist GFT505 in CDAHFD-induced NASH model.PLoS One. 2020; 15e0243911
- One week of CDAHFD induces steatohepatitis and mitochondrial dysfunction with oxidative stress in liver.Int J Mol Sci. 2021; 22: 5851
- Lysophosphatidic acid signaling in obesity and insulin resistance.Nutrients. 2018; 10: 399
- Autotaxin-lysophosphatidic acid: from inflammation to cancer development.Mediators Inflamm. 2017; 20179173090
- Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression.J Lipid Res. 2016; 57: 25-35
- FGF21 as modulator of metabolism in health and disease.Front Physiol. 2019; 10: 419
- Fatty liver and FGF21 physiology.Exp Cell Res. 2017; 360: 2-5
- Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets.Gastroenterology. 2014; 147: 1073-1083.e6
- Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway.Int Immunopharmacol. 2016; 38: 144-152
- Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways.Toxicol Appl Pharmacol. 2016; 290: 43-53
- Fibroblast growth factor (FGF)-21 based therapies: a magic bullet for nonalcoholic fatty liver disease (NAFLD)?.Expert Opin Investig Drugs. 2020; 29: 197-204
- FGF21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases.Front Endocrinol (Lausanne). 2020; 11601290
- Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial.Nat Med. 2021; 27: 1262-1271
- LLF580, an FGF21 analog, reduces triglycerides and hepatic fat in obese adults with modest hypertriglyceridemia.J Clin Endocrinol Metab. 2022; 107: e57-e70
- PPAR agonists and metabolic syndrome: an established role?.Int J Mol Sci. 2018; 19: 1197
- PPARalpha is a key regulator of hepatic FGF21.Biochem Biophys Res Commun. 2007; 360: 437-440
- Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease.J Hepatol. 2015; 62: 720-733
- PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice.Int J Mol Sci. 2020; 21: 2061
- Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.Gut. 2016; 65: 1202-1214
- PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes.J Gastroenterol Hepatol. 2008; 23: 102-109
- Decreased fatty acid β-oxidation is the main cause of fatty liver induced by polyunsaturated fatty acid deficiency in mice.Tohoku J Exp Med. 2017; 242: 229-239
- A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease.Dig Liver Dis. 2008; 40: 200-205
- Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions.FEBS Lett. 2014; 588: 2712-2727
- Autotaxin (lysoPLD/NPP2) protects fibroblasts from apoptosis through its enzymatic product, lysophosphatidic acid, utilizing albumin-bound substrate.Biochem Biophys Res Commun. 2005; 337: 967-975
- Inhibition of autotaxin with GLPG1690 increases the efficacy of radiotherapy and chemotherapy in a mouse model of breast cancer.Mol Cancer Ther. 2020; 19: 63-74
- Design and development of autotaxin inhibitors.Pharmaceuticals (Basel). 2021; 14: 1203
- Non-alcoholic fatty liver disease: a clinical update.J Clin Transl Hepatol. 2017; 5: 384-393
- Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver.Endocrinology. 2009; 150: 4625-4633
- Adipocyte fatty acid binding protein promotes the onset and progression of liver fibrosis via mediating the crosstalk between liver sinusoidal endothelial cells and hepatic stellate cells.Adv Sci (Weinh). 2021; 8e2003721
- Fractionation of mammalian liver cells by differential centrifugation: II. Experimental procedures and results.J Exp Med. 1946; 84: 61-89
- Improved Folch method for liver-fat quantification.Front Vet Sci. 2020; 7594853
- Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress.Cell Metab. 2020; 32: 229-242.e8
- Metabolic role of fatty acid binding protein 7 in mediating triple-negative breast cancer cell death via PPAR-α signaling.J Lipid Res. 2019; 60: 1807-1817
- Measurement of autotaxin/lysophospholipase D activity.Methods Enzymol. 2007; 434: 89-104
Article Info
Publication History
Publication stage
In Press Journal Pre-ProofFootnotes
Conflicts of interest The authors disclose no conflicts.
Funding This study was supported by the Hong Kong Research Grants Council/Area of Excellence (AoE/M/707-18), the Health and Medical Research Fund (06172446), the Shenzhen-Hong Kong-Macau Science and Technology Program Category C (SGDX20210823103537031), and the Hong Kong Croucher Foundation (CAS#20902).
Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy