Keywords
Abbreviations used in this paper:
CNV (copy number variation), CSC (cancer stem cell), DC (dendritic cell), FACS (fluorescence-activated cell sorting), HBV (hepatitis B virus), HCC (hepatocellular carcinoma), ILC (innate lymphoid cell), ITH (intratumoral heterogeneity), MAIT (mucosal-associated invariant T cell), NK (natural killer), scRNA-seq (single-cell RNA-sequencing), snRNA-seq (single nucleus RNA-sequencing), TAM (tumor-associated macrophage), TCGA (The Cancer Genome Atlas), TF (transcription factor), TME (tumor microenvironment), Treg (regulatory T cell)- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
scRNA-seq Platforms and Procedures
scRNA-seq vs bulk-cell RNA-seq

scRNA-seq Platforms

Single-Cell Capture
Use of scRNA-seq to Analyze Different Cell Types in the Tumor
Previous Reports Using scRNA-seq on HCC
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Lim C.J.
- Lee Y.H.
- Pan L.
- Lai L.Y.
- Chua C.
- Wasser M.
- Lim T.K.H.
- Yeong J.
- Toh H.C.
- Lee S.Y.
- Chan C.Y.
- Goh B.K.P.
- Chung A.
- Heikenwalder M.
- Ng I.O.L.
- Chow P.
- Albani S.
- Chew V.
- Losic B.
- Craig A.J.
- Villacorta-Martin C.
- Martins S.N.
- Akers N.
- Chen X.T.
- Ahsen M.E.
- von Felden J.
- Labgaa I.
- D'Avola D.
- Allette K.
- Lira S.A.
- Furtado G.C.
- Garcia-Lezana T.
- Restrepo P.
- Stueck A.
- Ward S.C.
- Fiel M.I.
- Hiotis S.P.
- Gunasekaran G.
- Sia D.
- Schadt E.E.
- Sebra R.
- Schwartz M.
- Llovet J.M.
- Thung S.
- Stolovitzky G.
- Villanueva A.
- Song G.H.
- Shi Y.
- Zhang M.Y.
- Goswami S.
- Afridi S.
- Meng L.
- Ma J.Q.
- Chen Y.
- Lin Y.P.
- Zhang J.
- Liu Y.M.
- Jin Z.J.
- Yang S.X.
- Rao D.N.
- Zhang S.
- Ke A.W.
- Wang X.Y.
- Cao Y.
- Zhou J.
- Fan J.
- Zhang X.M.
- Xi R.B.
- Gao Q.
- Sun Y.F.
- Wu L.
- Liu S.P.
- Jiang M.M.
- Hu B.
- Zhou K.Q.
- Guo W.
- Xu Y.
- Zhong Y.
- Zhou X.R.
- Zhang Z.F.
- Liu G.
- Liu S.
- Shi Y.H.
- Ji Y.
- Du M.
- Li N.N.
- Li G.B.
- Zhao Z.K.
- Huang X.Y.
- Xu L.Q.
- Yu Q.C.
- Peng D.H.
- Qiu S.J.
- Sun H.C.
- Dean M.
- Wang X.D.
- Chung W.Y.
- Dennison A.R.
- Zhou J.
- Hou Y.
- Fan J.
- Yang X.R.
- Ma L.
- Wang L.
- Khatib S.A.
- Chang C.W.
- Heinrich S.
- Dominguez D.A.
- Forgues M.
- Candia J.
- Hernandez M.O.
- Kelly M.
- Zhao Y.
- Tran B.
- Hernandez J.M.
- Davis J.L.
- Kleiner D.E.
- Wood B.J.
- Greten T.F.
- Wang X.W.
- Zheng B.
- Wang D.
- Qiu X.
- Luo G.
- Wu T.
- Yang S.
- Li Z.
- Zhu Y.
- Wang S.
- Wu R.
- Sui C.
- Gu Z.
- Shen S.
- Jeong S.
- Wu X.
- Gu J.
- Wang H.
- Chen L.
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
- Sun Y.F.
- Wu L.
- Liu S.P.
- Jiang M.M.
- Hu B.
- Zhou K.Q.
- Guo W.
- Xu Y.
- Zhong Y.
- Zhou X.R.
- Zhang Z.F.
- Liu G.
- Liu S.
- Shi Y.H.
- Ji Y.
- Du M.
- Li N.N.
- Li G.B.
- Zhao Z.K.
- Huang X.Y.
- Xu L.Q.
- Yu Q.C.
- Peng D.H.
- Qiu S.J.
- Sun H.C.
- Dean M.
- Wang X.D.
- Chung W.Y.
- Dennison A.R.
- Zhou J.
- Hou Y.
- Fan J.
- Yang X.R.
Reference | Samples | Platform | Cells | Patients | Cell Types | Data Accession Number |
---|---|---|---|---|---|---|
2
Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021; 12: 3684 | HCC | 10X | 43,645 | 8 | All cell types | SRP318499 |
3
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021; 184: 404-421.e16 | HCC, adjacent tissues | MIRALCS | 16,498 | 18 | All cell types | CNP0000650 |
10 | HCC, cell lines | Smart-seq | 118 | 1 | HCC cells, HuH1 cells, HuH7 cells | n/a |
11
Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut. 2019; 68: 916-927 | HCC (HBV + nonviral), adjacent tissues, PBMCs | CyTOF | n/a | 23 | Immune lineages | n/a |
12 | HCC PDTX | Fluidigm C1 | 139 | n/a | CSC clusters | n/a |
13
Intratumoral heterogeneity and clonal evolution in liver cancer. Nat Commun. 2020; 11: 291 | HCC | 10X | 38,553 | 2 | All cell types | E-MTAB-5905; GSE112271; E-MTAB-5899; E-MTAB-8127; E-MTAB-5878 |
14
Global immune characterization of HBV/HCV-related hepatocellular carcinoma identifies macrophage and T-cell subsets associated with disease progression. Cell Discov. 2020; 6: 90 | HCC, nontumor liver tissues | 10X | 41,698 | 7 | Immune cell lineages | CRA002308 |
15
Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma. Nat Commun. 2021; 12: 4091 | HCC | Smart-seq2 | 113 | 10 | CTCs | EGAS00001005204 |
16 | HCC whole blood | Smart-seq2 | 38 | 6 | CTCs | n/a |
17 | HCC; normal human hepatocytes | CEL-Seq2/Smart-seq2 | 938 cells (420 HCC cells), 200 healthy hepatocytes | 2 | HCC cells (nonimmune cells) | SRP165160; SRP275756 |
18 | HCC | 10X | 5753 | 1 | All cell types | n/a |
19 | HCC PDTX | BD Rhapsody | 10,602 | n/a | All cell types | GSE175716 |
20 | iPSCs, hepatoblasts, hepatic organoids | Fluidigm C1 | 424 | n/a | iPSC, hepatoblast, hepatic organoid | GSE139382 |
21 | HCC and paired normal liver | 10X | 5782 (HCC cells); 11,394 (normal liver cells) | 4 | All cell types | EGAS00001005194 |
22 | HCC and NT | Smart-seq2 | 405 | 6 | All cell types | GSE154906 |
23 | Mouse HCC cells | 10X | 27,327 | n/a | All cell types | GSE157561 |
24
Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol. 2021; 75: 1397-1408 | HCC and iCCA biopsies | 10X | 56,721 | 44 | All cell types | GSE151530 |
25
Trajectory and functional analysis of PD-1(high) CD4(+)CD8(+) T cells in hepatocellular carcinoma by single-cell cytometry and transcriptome sequencing. Adv Sci (Weinh). 2020; 72000224 | HCC | 10X | 17,432,600 | 39 | Immune cell lineages | CRA001276 |
26 | HCC, NT, PBMC | Smart-seq2 | 5063 | 6 | T cells | EGAS00001002072; GSE98638 |
27
Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019; 179: 829-845.e20 | HCC, adjacent tissues, hepatic lymph nodes, ascitic fluid, PBMC | 10X; Smart-seq2 | 66,187 (10X Genomics); 11,134 (Smart-Seq2) | 16 | CD45+ immune cells | HRA000069; EGAS00001003 |
28 | HCC, iCCA | 10X | 5082 | 19 | All cell types | GSE125449 |

HCC Cancer Cells
- Losic B.
- Craig A.J.
- Villacorta-Martin C.
- Martins S.N.
- Akers N.
- Chen X.T.
- Ahsen M.E.
- von Felden J.
- Labgaa I.
- D'Avola D.
- Allette K.
- Lira S.A.
- Furtado G.C.
- Garcia-Lezana T.
- Restrepo P.
- Stueck A.
- Ward S.C.
- Fiel M.I.
- Hiotis S.P.
- Gunasekaran G.
- Sia D.
- Schadt E.E.
- Sebra R.
- Schwartz M.
- Llovet J.M.
- Thung S.
- Stolovitzky G.
- Villanueva A.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Losic B.
- Craig A.J.
- Villacorta-Martin C.
- Martins S.N.
- Akers N.
- Chen X.T.
- Ahsen M.E.
- von Felden J.
- Labgaa I.
- D'Avola D.
- Allette K.
- Lira S.A.
- Furtado G.C.
- Garcia-Lezana T.
- Restrepo P.
- Stueck A.
- Ward S.C.
- Fiel M.I.
- Hiotis S.P.
- Gunasekaran G.
- Sia D.
- Schadt E.E.
- Sebra R.
- Schwartz M.
- Llovet J.M.
- Thung S.
- Stolovitzky G.
- Villanueva A.
HCC CSCs
- Ma L.
- Wang L.
- Khatib S.A.
- Chang C.W.
- Heinrich S.
- Dominguez D.A.
- Forgues M.
- Candia J.
- Hernandez M.O.
- Kelly M.
- Zhao Y.
- Tran B.
- Hernandez J.M.
- Davis J.L.
- Kleiner D.E.
- Wood B.J.
- Greten T.F.
- Wang X.W.
Intricate Immune Ecosystem
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Song G.H.
- Shi Y.
- Zhang M.Y.
- Goswami S.
- Afridi S.
- Meng L.
- Ma J.Q.
- Chen Y.
- Lin Y.P.
- Zhang J.
- Liu Y.M.
- Jin Z.J.
- Yang S.X.
- Rao D.N.
- Zhang S.
- Ke A.W.
- Wang X.Y.
- Cao Y.
- Zhou J.
- Fan J.
- Zhang X.M.
- Xi R.B.
- Gao Q.
- Song G.H.
- Shi Y.
- Zhang M.Y.
- Goswami S.
- Afridi S.
- Meng L.
- Ma J.Q.
- Chen Y.
- Lin Y.P.
- Zhang J.
- Liu Y.M.
- Jin Z.J.
- Yang S.X.
- Rao D.N.
- Zhang S.
- Ke A.W.
- Wang X.Y.
- Cao Y.
- Zhou J.
- Fan J.
- Zhang X.M.
- Xi R.B.
- Gao Q.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Lim C.J.
- Lee Y.H.
- Pan L.
- Lai L.Y.
- Chua C.
- Wasser M.
- Lim T.K.H.
- Yeong J.
- Toh H.C.
- Lee S.Y.
- Chan C.Y.
- Goh B.K.P.
- Chung A.
- Heikenwalder M.
- Ng I.O.L.
- Chow P.
- Albani S.
- Chew V.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Lim C.J.
- Lee Y.H.
- Pan L.
- Lai L.Y.
- Chua C.
- Wasser M.
- Lim T.K.H.
- Yeong J.
- Toh H.C.
- Lee S.Y.
- Chan C.Y.
- Goh B.K.P.
- Chung A.
- Heikenwalder M.
- Ng I.O.L.
- Chow P.
- Albani S.
- Chew V.
Lymphocytes in the TME
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Song G.H.
- Shi Y.
- Zhang M.Y.
- Goswami S.
- Afridi S.
- Meng L.
- Ma J.Q.
- Chen Y.
- Lin Y.P.
- Zhang J.
- Liu Y.M.
- Jin Z.J.
- Yang S.X.
- Rao D.N.
- Zhang S.
- Ke A.W.
- Wang X.Y.
- Cao Y.
- Zhou J.
- Fan J.
- Zhang X.M.
- Xi R.B.
- Gao Q.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Lim C.J.
- Lee Y.H.
- Pan L.
- Lai L.Y.
- Chua C.
- Wasser M.
- Lim T.K.H.
- Yeong J.
- Toh H.C.
- Lee S.Y.
- Chan C.Y.
- Goh B.K.P.
- Chung A.
- Heikenwalder M.
- Ng I.O.L.
- Chow P.
- Albani S.
- Chew V.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Zheng B.
- Wang D.
- Qiu X.
- Luo G.
- Wu T.
- Yang S.
- Li Z.
- Zhu Y.
- Wang S.
- Wu R.
- Sui C.
- Gu Z.
- Shen S.
- Jeong S.
- Wu X.
- Gu J.
- Wang H.
- Chen L.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Heinrich B.
- Gertz E.M.
- Schaffer A.A.
- Craig A.
- Ruf B.
- Subramanyam V.
- McVey J.C.
- Diggs L.P.
- Heinrich S.
- Rosato U.
- Ma C.
- Yan C.
- Hu Y.
- Zhao Y.
- Shen T.W.
- Kapoor V.
- Telford W.
- Kleiner D.E.
- Stovroff M.K.
- Dhani H.S.
- Kang J.
- Fishbein T.
- Wang X.W.
- Ruppin E.
- Kroemer A.
- Greten T.F.
- Korangy F.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Wei Y.
- Lao X.M.
- Xiao X.
- Wang X.Y.
- Wu Z.J.
- Zeng Q.H.
- Wu C.Y.
- Wu R.Q.
- Chen Z.X.
- Zheng L.M.
- Li B.
- Kuang D.M.
- Barry K.C.
- Hsu J.
- Broz M.L.
- Cueto F.J.
- Binnewies M.
- Combes A.J.
- Nelson A.E.
- Loo K.
- Kumar R.
- Rosenblum M.D.
- Alvarado M.D.
- Wolf D.M.
- Bogunovic D.
- Bhardwaj N.
- Daud A.I.
- Ha P.K.
- Ryan W.R.
- Pollack J.L.
- Samad B.
- Asthana S.
- Chan V.
- Krummel M.F.
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
- Song G.H.
- Shi Y.
- Zhang M.Y.
- Goswami S.
- Afridi S.
- Meng L.
- Ma J.Q.
- Chen Y.
- Lin Y.P.
- Zhang J.
- Liu Y.M.
- Jin Z.J.
- Yang S.X.
- Rao D.N.
- Zhang S.
- Ke A.W.
- Wang X.Y.
- Cao Y.
- Zhou J.
- Fan J.
- Zhang X.M.
- Xi R.B.
- Gao Q.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
Myeloid cells in the TME
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Song G.H.
- Shi Y.
- Zhang M.Y.
- Goswami S.
- Afridi S.
- Meng L.
- Ma J.Q.
- Chen Y.
- Lin Y.P.
- Zhang J.
- Liu Y.M.
- Jin Z.J.
- Yang S.X.
- Rao D.N.
- Zhang S.
- Ke A.W.
- Wang X.Y.
- Cao Y.
- Zhou J.
- Fan J.
- Zhang X.M.
- Xi R.B.
- Gao Q.
- Song G.H.
- Shi Y.
- Zhang M.Y.
- Goswami S.
- Afridi S.
- Meng L.
- Ma J.Q.
- Chen Y.
- Lin Y.P.
- Zhang J.
- Liu Y.M.
- Jin Z.J.
- Yang S.X.
- Rao D.N.
- Zhang S.
- Ke A.W.
- Wang X.Y.
- Cao Y.
- Zhou J.
- Fan J.
- Zhang X.M.
- Xi R.B.
- Gao Q.
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
- Wu S.Z.
- Al-Eryani G.
- Roden D.L.
- Junankar S.
- Harvey K.
- Andersson A.
- Thennavan A.
- Wang C.
- Torpy J.R.
- Bartonicek N.
- Wang T.
- Larsson L.
- Kaczorowski D.
- Weisenfeld N.I.
- Uytingco C.R.
- Chew J.G.
- Bent Z.W.
- Chan C.L.
- Gnanasambandapillai V.
- Dutertre C.A.
- Gluch L.
- Hui M.N.
- Beith J.
- Parker A.
- Robbins E.
- Segara D.
- Cooper C.
- Mak C.
- Chan B.
- Warrier S.
- Ginhoux F.
- Millar E.
- Powell J.E.
- Williams S.R.
- Liu X.S.
- O'Toole S.
- Lim E.
- Lundeberg J.
- Perou C.M.
- Swarbrick A.
- Leader A.M.
- Grout J.A.
- Maier B.B.
- Nabet B.Y.
- Park M.D.
- Tabachnikova A.
- Chang C.
- Walker L.
- Lansky A.
- Le Berichel J.
- Troncoso L.
- Malissen N.
- Davila M.
- Martin J.C.
- Magri G.
- Tuballes K.
- Zhao Z.
- Petralia F.
- Samstein R.
- D'Amore N.R.
- Thurston G.
- Kamphorst A.O.
- Wolf A.
- Flores R.
- Wang P.
- Muller S.
- Mellman I.
- Beasley M.B.
- Salmon H.
- Rahman A.H.
- Marron T.U.
- Kenigsberg E.
- Merad M.
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
Cell-Cell Interactions
- Vento-Tormo R.
- Efremova M.
- Botting R.A.
- Turco M.Y.
- Vento-Tormo M.
- Meyer K.B.
- Park J.E.
- Stephenson E.
- Polanski K.
- Goncalves A.
- Gardner L.
- Holmqvist S.
- Henriksson J.
- Zou A.
- Sharkey A.M.
- Millar B.
- Innes B.
- Wood L.
- Wilbrey-Clark A.
- Payne R.P.
- Ivarsson M.A.
- Lisgo S.
- Filby A.
- Rowitch D.H.
- Bulmer J.N.
- Wright G.J.
- Stubbington M.J.T.
- Haniffa M.
- Moffett A.
- Teichmann S.A.
Interactions between cancer cells and immune subsets
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
Interaction within immune subsets
- Wei Y.
- Lao X.M.
- Xiao X.
- Wang X.Y.
- Wu Z.J.
- Zeng Q.H.
- Wu C.Y.
- Wu R.Q.
- Chen Z.X.
- Zheng L.M.
- Li B.
- Kuang D.M.
- Wei Y.
- Lao X.M.
- Xiao X.
- Wang X.Y.
- Wu Z.J.
- Zeng Q.H.
- Wu C.Y.
- Wu R.Q.
- Chen Z.X.
- Zheng L.M.
- Li B.
- Kuang D.M.
- Ho D.W.H.
- Tsui Y.M.
- Chan L.K.
- Sze K.M.F.
- Zhang X.
- Cheu J.W.S.
- Chiu Y.T.
- Lee J.M.F.
- Chan A.C.Y.
- Cheung E.T.Y.
- Yau D.T.W.
- Chia N.H.
- Lo I.L.O.
- Sham P.C.
- Cheung T.T.
- Wong C.C.L.
- Ng I.O.L.
- Zhang Q.
- He Y.
- Luo N.
- Patel S.J.
- Han Y.
- Gao R.
- Modak M.
- Carotta S.
- Haslinger C.
- Kind D.
- Peet G.W.
- Zhong G.
- Lu S.
- Zhu W.
- Mao Y.
- Xiao M.
- Bergmann M.
- Hu X.
- Kerkar S.P.
- Vogt A.B.
- Pflanz S.
- Liu K.
- Peng J.
- Ren X.
- Zhang Z.
Translational Implications and Clinical Implementation and their Barriers
Translational Implications and Clinical Implementation
- Sun Y.F.
- Wu L.
- Liu S.P.
- Jiang M.M.
- Hu B.
- Zhou K.Q.
- Guo W.
- Xu Y.
- Zhong Y.
- Zhou X.R.
- Zhang Z.F.
- Liu G.
- Liu S.
- Shi Y.H.
- Ji Y.
- Du M.
- Li N.N.
- Li G.B.
- Zhao Z.K.
- Huang X.Y.
- Xu L.Q.
- Yu Q.C.
- Peng D.H.
- Qiu S.J.
- Sun H.C.
- Dean M.
- Wang X.D.
- Chung W.Y.
- Dennison A.R.
- Zhou J.
- Hou Y.
- Fan J.
- Yang X.R.
Barriers to Clinical Implementation
Conclusions and Future Directions
- Sun Y.
- Wu L.
- Zhong Y.
- Zhou K.
- Hou Y.
- Wang Z.
- Zhang Z.
- Xie J.
- Wang C.
- Chen D.
- Huang Y.
- Wei X.
- Shi Y.
- Zhao Z.
- Li Y.
- Guo Z.
- Yu Q.
- Xu L.
- Volpe G.
- Qiu S.
- Zhou J.
- Ward C.
- Sun H.
- Yin Y.
- Xu X.
- Wang X.
- Esteban M.A.
- Yang H.
- Wang J.
- Dean M.
- Zhang Y.
- Liu S.
- Yang X.
- Fan J.
- Affo S.
- Nair A.
- Brundu F.
- Ravichandra A.
- Bhattacharjee S.
- Matsuda M.
- Chin L.
- Filliol A.
- Wen W.
- Song X.
- Decker A.
- Worley J.
- Caviglia J.M.
- Yu L.
- Yin D.
- Saito Y.
- Savage T.
- Wells R.G.
- Mack M.
- Zender L.
- Arpaia N.
- Remotti H.E.
- Rabadan R.
- Sims P.
- Leblond A.L.
- Weber A.
- Riener M.O.
- Stockwell B.R.
- Gaublomme J.
- Llovet J.M.
- Kalluri R.
- Michalopoulos G.K.
- Seki E.
- Sia D.
- Chen X.
- Califano A.
- Schwabe R.F.
- Zhang M.
- Yang H.
- Wan L.
- Wang Z.
- Wang H.
- Ge C.
- Liu Y.
- Hao Y.
- Zhang D.
- Shi G.
- Gong Y.
- Ni Y.
- Wang C.
- Zhang Y.
- Xi J.
- Wang S.
- Shi L.
- Zhang L.
- Yue W.
- Pei X.
- Liu B.
- Yan X.
- Bakken T.E.
- Hodge R.D.
- Miller J.A.
- Yao Z.
- Nguyen T.N.
- Aevermann B.
- Barkan E.
- Bertagnolli D.
- Casper T.
- Dee N.
- Garren E.
- Goldy J.
- Graybuck L.T.
- Kroll M.
- Lasken R.S.
- Lathia K.
- Parry S.
- Rimorin C.
- Scheuermann R.H.
- Schork N.J.
- Shehata S.I.
- Tieu M.
- Phillips J.W.
- Bernard A.
- Smith K.A.
- Zeng H.
- Lein E.S.
- Tasic B.
- Andrews T.S.
- Atif J.
- Liu J.C.
- Perciani C.T.
- Ma X.Z.
- Thoeni C.
- Slyper M.
- Eraslan G.
- Segerstolpe A.
- Manuel J.
- Chung S.
- Winter E.
- Cirlan I.
- Khuu N.
- Fischer S.
- Rozenblatt-Rosen O.
- Regev A.
- McGilvray I.D.
- Bader G.D.
- MacParland S.A.
References
- Hepatocellular carcinoma: epidemiology and molecular carcinogenesis.Gastroenterology. 2007; 132: 2557-2576
- Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma.Nat Commun. 2021; 12: 3684
- Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma.Cell. 2021; 184: 404-421.e16
- Benchmarking of cell type deconvolution pipelines for transcriptomics data.Nat Commun. 2020; 11: 5650
- A benchmark for RNA-seq deconvolution analysis under dynamic testing environments.Genome Biol. 2021; 22: 102
- Exponential scaling of single-cell RNA-seq in the past decade.Nat Protoc. 2018; 13: 599-604
- Smart-seq2 for sensitive full-length transcriptome profiling in single cells.Nat Methods. 2013; 10: 1096-1098
- Direct comparative analyses of 10X Genomics Chromium and Smart-seq2.Genomics Proteomics Bioinformatics. 2021; 19: 253-266
- Applications of single-cell and bulk RNA sequencing in onco-immunology.Eur J Cancer. 2021; 149: 193-210
- Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma.Hepatology. 2018; 68: 127-140
- Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma.Gut. 2019; 68: 916-927
- Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and sternness-related subpopulations in liver cancer.Cancer Lett. 2019; 459: 176-185
- Intratumoral heterogeneity and clonal evolution in liver cancer.Nat Commun. 2020; 11: 291
- Global immune characterization of HBV/HCV-related hepatocellular carcinoma identifies macrophage and T-cell subsets associated with disease progression.Cell Discov. 2020; 6: 90
- Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma.Nat Commun. 2021; 12: 4091
- A dual-filtration system for single-cell sequencing of circulating tumor cells and clusters in HCC.Hepatol Commun. 2022 Jan 23; ([E-pub ahead of print])
- Hepatitis B virus compartmentalization and single-cell differentiation in hepatocellular carcinoma.Life Sci Alliance. 2021; 4e202101036
- Single-cell transcriptomics analysis reveals intratumoral heterogeneity and identifies a gene signature associated with prognosis of hepatocellular carcinoma.Biosci Rep. 2022; 42BSR20212560
- Activation of FcRn mediates a primary resistance response to sorafenib in hepatocellular carcinoma by single-cell RNA sequencing.Front Pharmacol. 2021; 12709343
- The phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy.J Hepatol. 2020; 72: 746-760
- Single cell and plasma RNA sequencing for RNA liquid biopsy for hepatocellular carcinoma.Clin Chem. 2021; 67: 1492-1502
- Single-cell analysis reveals the intra-tumor heterogeneity and identifies MLXIPL as a biomarker in the cellular trajectory of hepatocellular carcinoma.Cell Death Discov. 2021; 7: 14
- Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment.Cell Rep. 2021; 37109974
- Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.J Hepatol. 2021; 75: 1397-1408
- Trajectory and functional analysis of PD-1(high) CD4(+)CD8(+) T cells in hepatocellular carcinoma by single-cell cytometry and transcriptome sequencing.Adv Sci (Weinh). 2020; 72000224
- Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing.Cell. 2017; 169: 1342-1356.e16
- Landscape and dynamics of single immune cells in hepatocellular carcinoma.Cell. 2019; 179: 829-845.e20
- Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer.Cancer Cell. 2019; 36: 418-430.e6
- Single-cell RNA-seq analysis reveals microenvironmental infiltration of plasma cells and hepatocytic prognostic markers in HCC with cirrhosis.Front Oncol. 2020; 10596318
- Cancer stem cells (CSCs) in cancer progression and therapy.J Cell Physiol. 2019; 234: 8381-8395
- Hallmarks of cancer: the next generation.Cell. 2011; 144: 646-674
- Roles of the immune system in cancer: from tumor initiation to metastatic progression.Genes Dev. 2018; 32: 1267-1284
- Mucosal-associated invariant T cells and disease.Nat Rev Immunol. 2019; 19: 643-657
- The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma.Gut. 2022; 71: 1161-1175
- Plasma cell polarization to the immunoglobulin G phenotype in hepatocellular carcinomas involves epigenetic alterations and promotes hepatoma progression in mice.Gastroenterology. 2019; 156: 1890-1904.e16
- NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control.Cell. 2018; 172: 1022-1037.e14
- New aspects of natural-killer-cell surveillance and therapy of cancer.Nat Rev Cancer. 2002; 2: 850-861
- A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments.Nat Med. 2018; 24: 1178-1191
- Myeloid cells in hepatocellular carcinoma.Hepatology. 2015; 62: 1304-1312
- Dendritic cells with an increased PD-L1 by TGF-beta induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells.Int Immunopharmacol. 2014; 20: 117-123
- A single-cell and spatially resolved atlas of human breast cancers.Nat Genet. 2021; 53: 1334-1347
- Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification.Cancer Cell. 2021; 39: 1594-1609.e12
- Deciphering cell-cell interactions and communication from gene expression.Nat Rev Genet. 2021; 22: 71-88
- Single-cell reconstruction of the early maternal-fetal interface in humans.Nature. 2018; 563: 347-353
- CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.Nat Protoc. 2020; 15: 1484-1506
- Targeting PD-1/PD-L1 interactions for cancer immunotherapy.Oncoimmunology. 2012; 1: 1223-1225
- The application of single-cell sequencing technology in the diagnosis and treatment of hepatocellular carcinoma.Ann Transl Med. 2019; 7: 790
- An overview on single-cell technology for hepatocellular carcinoma diagnosis.Int J Mol Sci. 2022; 23: 1402
- Applications of single-cell sequencing in cancer research: progress and perspectives.J Hematol Oncol. 2021; 14: 91
- A novel prognostic model based on single-cell RNA sequencing data for hepatocellular carcinoma.Cancer Cell Int. 2022; 22: 38
- Single-cell RNA sequencing in cancer: applications, advances, and emerging challenges.Mol Ther Oncolytics. 2021; 21: 183-206
- Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications.Nat Rev Gastroenterol Hepatol. 2022; 19: 26-44
- Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis.Cells. 2019; 8: 503
- Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity.JHEP Rep. 2021; 3100278
- Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations.Cancer Cell. 2021; 39: 883
- Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice.Hepatology. 2021; 74: 2774-2790
- Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma.J Hepatol. 2020; 73: 1118-1130
- Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis.J Am Soc Nephrol. 2019; 30: 23-32
- Single-nucleus and single-cell transcriptomes compared in matched cortical cell types.PLoS One. 2018; 13e0209648
- Massively parallel single-nucleus RNA-seq with DroNc-seq.Nat Methods. 2017; 14: 955-958
- A multi-omics approach to liver diseases: integration of single nuclei transcriptomics with proteomics and HiCap bulk data in human liver.OMICS. 2020; 24: 180-194
- Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity.Hepatol Commun. 2022; 6: 821-840
- Simultaneous epitope and transcriptome measurement in single cells.Nat Methods. 2017; 14: 865-868
- Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics.Genome Biol. 2018; 19: 224
- Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells.Nat Methods. 2019; 16: 409-412
- Immunotherapy of hepatocellular carcinoma: facts and hopes.Clin Cancer Res. 2018; 24: 1518-1524
Article Info
Publication History
Publication stage
In Press Journal Pre-ProofFootnotes
Conflicts of interest The authors disclose no conflicts.
Funding The study was supported by the National Natural Science Foundation of China ( 81872222 ), Health and Medical Research Fund ( 03142836 and 07182546 ), Hong Kong Research Grants Council General Research Fund (17100021 and 17117019), Hong Kong Research Grants Council Theme-based Research Scheme (T12-704/16-R), Innovation and Technology Commission grant for State Key Laboratory of Liver Research, University Development Fund of The University of Hong Kong , and Loke Yew Endowed Professorship award. Irene Oi-Lin Ng is Loke Yew Professor in Pathology.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy