Background and Aims
Methods
Results
Conclusions
Graphical abstract

Keywords
Abbreviations used in this paper:
AltEntero (alternative enterocyte), AltEnteroPC (alternative enterocyte progenitor cell), βGal (β-galactosidase), DAI (Disease Activity Index), DSS (dextran sulfate sodium), FACS (fluorescence-activated cell sorter), FBS (fetal bovine serum), FZD (Frizzled), GFP (green fluorescent protein), GSEA (gene set enrichment analysis), H&E (hematoxylin and eosin), IBD (inflammatory bowel disease), IgG (immunoglobulin), IL (interleukin), IP (intraperitoneally), LGR (leucine-rich repeat-containing G protein–coupled receptor), LRP (lipoprotein receptor-related protein), mRNA (messenger RNA), PBS (phosphate-buffered saline), PBST (Triton X-100 in phosphate-buffered saline), RSPO (R-spondin), RT-qPCR (quantitative reverse-transcription polymerase chain reaction), SA (streptavidin), scRNA-seq (single-cell RNA-sequencing), SNN (shared nearest neighbor), STF (Super TopFlash), TA (transit amplifying), TNF-α (tumor necrosis factor α), UC (ulcerative colitis)- Reinisch W.
- Sandborn W.J.
- Hommes D.W.
- D'Haens G.
- Hanauer S.
- Schreiber S.
- Panaccione R.
- Fedorak R.N.
- Tighe M.B.
- Huang B.
- Kampman W.
- Lazar A.
- Thakkar R.
- Miao Y.
- Ha A.
- de Lau W.
- Yuki K.
- Santos A.J.M.
- You C.
- Geurts M.H.
- Puschhof J.
- Pleguezuelos-Manzano C.
- Peng W.C.
- Senlice R.
- Piani C.
- Buikema J.W.
- Gbenedio O.M.
- Vallon M.
- Yuan J.
- de Haan S.
- Hemrika W.
- Rösch K.
- Dang L.T.
- Baker D.
- Ott M.
- Depeille P.
- Wu S.M.
- Drost J.
- Nusse R.
- Roose J.P.
- Piehler J.
- Boj S.F.
- Janda C.Y.
- Clevers H.
- Kuo C.J.
- Garcia K.C.
- Yan K.S.
- Janda C.Y.
- Chang J.
- Zheng G.X.Y.
- Larkin K.A.
- Luca V.C.
- Chia L.A.
- Mah A.T.
- Han A.
- Terry J.M.
- Ootani A.
- Roelf K.
- Lee M.
- Yuan J.
- Li X.
- Bolen C.R.
- Wilhelmy J.
- Davies P.S.
- Ueno H.
- von Furstenberg R.J.
- Belgrader P.
- Ziraldo S.B.
- Ordonez H.
- Henning S.J.
- Wong M.H.
- Snyder M.P.
- Weissman I.L.
- Hsueh A.J.
- Mikkelsen T.S.
- Garcia K.C.
- Kuo C.J.
- de Lau W.
- Barker N.
- Low T.Y.
- Koo B.K.
- Li V.S.
- Teunissen H.
- Kujala P.
- Haegebarth A.
- Peters P.J.
- van de Wetering M.
- Stange D.E.
- van Es J.E.
- Guardavaccaro D.
- Schasfoort R.B.
- Mohri Y.
- Nishimori K.
- Mohammed S.
- Heck A.J.
- Clevers H.
- Yan K.S.
- Janda C.Y.
- Chang J.
- Zheng G.X.Y.
- Larkin K.A.
- Luca V.C.
- Chia L.A.
- Mah A.T.
- Han A.
- Terry J.M.
- Ootani A.
- Roelf K.
- Lee M.
- Yuan J.
- Li X.
- Bolen C.R.
- Wilhelmy J.
- Davies P.S.
- Ueno H.
- von Furstenberg R.J.
- Belgrader P.
- Ziraldo S.B.
- Ordonez H.
- Henning S.J.
- Wong M.H.
- Snyder M.P.
- Weissman I.L.
- Hsueh A.J.
- Mikkelsen T.S.
- Garcia K.C.
- Kuo C.J.
Results
Treatment With Wnt Mimetics Rapidly Repaired DSS-Damaged Colon Epithelium

- Yan K.S.
- Janda C.Y.
- Chang J.
- Zheng G.X.Y.
- Larkin K.A.
- Luca V.C.
- Chia L.A.
- Mah A.T.
- Han A.
- Terry J.M.
- Ootani A.
- Roelf K.
- Lee M.
- Yuan J.
- Li X.
- Bolen C.R.
- Wilhelmy J.
- Davies P.S.
- Ueno H.
- von Furstenberg R.J.
- Belgrader P.
- Ziraldo S.B.
- Ordonez H.
- Henning S.J.
- Wong M.H.
- Snyder M.P.
- Weissman I.L.
- Hsueh A.J.
- Mikkelsen T.S.
- Garcia K.C.
- Kuo C.J.
- Yan K.S.
- Janda C.Y.
- Chang J.
- Zheng G.X.Y.
- Larkin K.A.
- Luca V.C.
- Chia L.A.
- Mah A.T.
- Han A.
- Terry J.M.
- Ootani A.
- Roelf K.
- Lee M.
- Yuan J.
- Li X.
- Bolen C.R.
- Wilhelmy J.
- Davies P.S.
- Ueno H.
- von Furstenberg R.J.
- Belgrader P.
- Ziraldo S.B.
- Ordonez H.
- Henning S.J.
- Wong M.H.
- Snyder M.P.
- Weissman I.L.
- Hsueh A.J.
- Mikkelsen T.S.
- Garcia K.C.
- Kuo C.J.

SZN-1326-p, a Fzd5,8-Targeted Wnt Mimetic, Stimulated Growth of Mouse Intestinal Organoids
- Miao Y.
- Ha A.
- de Lau W.
- Yuki K.
- Santos A.J.M.
- You C.
- Geurts M.H.
- Puschhof J.
- Pleguezuelos-Manzano C.
- Peng W.C.
- Senlice R.
- Piani C.
- Buikema J.W.
- Gbenedio O.M.
- Vallon M.
- Yuan J.
- de Haan S.
- Hemrika W.
- Rösch K.
- Dang L.T.
- Baker D.
- Ott M.
- Depeille P.
- Wu S.M.
- Drost J.
- Nusse R.
- Roose J.P.
- Piehler J.
- Boj S.F.
- Janda C.Y.
- Clevers H.
- Kuo C.J.
- Garcia K.C.



The Fzd5,8-Specific Wnt Mimetic, SZN-1326-p, Was Efficacious in Repairing the DSS-Damaged Colon Epithelium



DSS Injury Induced Expression of Inflammatory Pathway Genes in the Epithelium

- Kinchen J.
- Chen H.H.
- Parikh K.
- Antanaviciute A.
- Jagielowicz M.
- Fawkner-Corbett D.
- Ashley N.
- Cubitt L.
- Mellado-Gomez E.
- Attar M.
- Sharma E.
- Wills Q.
- Bowden R.
- Richter F.C.
- Ahern D.
- Puri K.D.
- Henault J.
- Gervais F.
- Koohy H.
- Simmons A.
- Smillie C.S.
- Biton M.
- Ordovas-Montanes J.
- Sullivan K.M.
- Burgin G.
- Graham D.B.
- Herbst R.H.
- Rogel N.
- Slyper M.
- Waldman J.
- Sud M.
- Andrews E.
- Velonias G.
- Haber A.L.
- Jagadeesh K.
- Vickovic S.
- Yao J.
- Stevens C.
- Dionne D.
- Nguyen L.T.
- Villani A.C.
- Hofree M.
- Creasey E.A.
- Huang H.
- Rozenblatt-Rosen O.
- Garber J.J.
- Khalili H.
- Desch A.N.
- Daly M.J.
- Ananthakrishnan A.N.
- Shalek A.K.
- Xavier R.J.
- Regev A.

- Yui S.
- Azzolin L.
- Maimets M.
- Pedersen M.T.
- Fordham R.P.
- Hansen S.L.
- Larsen H.L.
- Guiu J.
- Alves M.R.P.
- Rundsten C.F.
- Johansen J.V.
- Li Y.
- Madsen C.D.
- Nakamura T.
- Watanabe M.
- Nielsen O.H.
- Schweiger P.J.
- Piccolo S.
- Jensen K.B.

SZN-1326-p Promoted Wnt Target and Cell Cycle Gene Expression and Expanded the PC Populations in the Epithelium Immediately Following Dosing


- Powell A.E.
- Wang Y.
- Li Y.
- Poulin E.J.
- Means A.L.
- Washington M.K.
- Higginbotham J.N.
- Juchheim A.
- Prasad N.
- Levy S.E.
- Guo Y.
- Shyr Y.
- Aronow B.J.
- Haigis K.M.
- Franklin J.L.
- Coffey R.J.
SZN-1326-p–Treated Epithelial Cells Differentiated More Quickly After Proliferation

SZN-1326-p Treatment Led to Epithelial Barrier Marker Restoration

Discussion
- Nile A.H.
- de Sousa E.M.F.
- Mukund S.
- Piskol R.
- Hansen S.
- Zhou L.
- Zhang Y.
- Fu Y.
- Gogol E.B.
- Kömüves L.G.
- Modrusan Z.
- Angers S.
- Franke Y.
- Koth C.
- Fairbrother W.J.
- Wang W.
- de Sauvage F.J.
- Hannoush R.N.
- Miao Y.
- Ha A.
- de Lau W.
- Yuki K.
- Santos A.J.M.
- You C.
- Geurts M.H.
- Puschhof J.
- Pleguezuelos-Manzano C.
- Peng W.C.
- Senlice R.
- Piani C.
- Buikema J.W.
- Gbenedio O.M.
- Vallon M.
- Yuan J.
- de Haan S.
- Hemrika W.
- Rösch K.
- Dang L.T.
- Baker D.
- Ott M.
- Depeille P.
- Wu S.M.
- Drost J.
- Nusse R.
- Roose J.P.
- Piehler J.
- Boj S.F.
- Janda C.Y.
- Clevers H.
- Kuo C.J.
- Garcia K.C.
- Schwitalla S.
- Fingerle A.A.
- Cammareri P.
- Nebelsiek T.
- Göktuna S.I.
- Ziegler P.K.
- Canli O.
- Heijmans J.
- Huels D.J.
- Moreaux G.
- Rupec R.A.
- Gerhard M.
- Schmid R.
- Barker N.
- Clevers H.
- Lang R.
- Neumann J.
- Kirchner T.
- Taketo M.M.
- van den Brink G.R.
- Sansom O.J.
- Arkan M.C.
- Greten F.R.
- Yan K.S.
- Janda C.Y.
- Chang J.
- Zheng G.X.Y.
- Larkin K.A.
- Luca V.C.
- Chia L.A.
- Mah A.T.
- Han A.
- Terry J.M.
- Ootani A.
- Roelf K.
- Lee M.
- Yuan J.
- Li X.
- Bolen C.R.
- Wilhelmy J.
- Davies P.S.
- Ueno H.
- von Furstenberg R.J.
- Belgrader P.
- Ziraldo S.B.
- Ordonez H.
- Henning S.J.
- Wong M.H.
- Snyder M.P.
- Weissman I.L.
- Hsueh A.J.
- Mikkelsen T.S.
- Garcia K.C.
- Kuo C.J.
- Miao Y.
- Ha A.
- de Lau W.
- Yuki K.
- Santos A.J.M.
- You C.
- Geurts M.H.
- Puschhof J.
- Pleguezuelos-Manzano C.
- Peng W.C.
- Senlice R.
- Piani C.
- Buikema J.W.
- Gbenedio O.M.
- Vallon M.
- Yuan J.
- de Haan S.
- Hemrika W.
- Rösch K.
- Dang L.T.
- Baker D.
- Ott M.
- Depeille P.
- Wu S.M.
- Drost J.
- Nusse R.
- Roose J.P.
- Piehler J.
- Boj S.F.
- Janda C.Y.
- Clevers H.
- Kuo C.J.
- Garcia K.C.
- Yan K.S.
- Janda C.Y.
- Chang J.
- Zheng G.X.Y.
- Larkin K.A.
- Luca V.C.
- Chia L.A.
- Mah A.T.
- Han A.
- Terry J.M.
- Ootani A.
- Roelf K.
- Lee M.
- Yuan J.
- Li X.
- Bolen C.R.
- Wilhelmy J.
- Davies P.S.
- Ueno H.
- von Furstenberg R.J.
- Belgrader P.
- Ziraldo S.B.
- Ordonez H.
- Henning S.J.
- Wong M.H.
- Snyder M.P.
- Weissman I.L.
- Hsueh A.J.
- Mikkelsen T.S.
- Garcia K.C.
- Kuo C.J.
Materials and Methods
Reagent or Resource | Source | Identifier |
---|---|---|
ACD probes | ||
RNAscope Probe—Mm-Axin2 | ACD #400331 | |
RNAscope Probe—Mm-Lgr5 | ACD #312171 | |
RNAscope Probe—Mm-Rnf43 | ACD #400371 | |
RNAscope Probe—Mm-Wnt2b | ACD #405031 | |
RNAscope Probe—Mm-Wnt5a | ACD #316791 | |
RNAscope Probe—Mm-RSPO3 | ACD #402011 | |
RNAscope Probe—Mm-Fzd1 | ACD #404871 | |
RNAscope Probe—Mm-Fzd2 | ACD #404881 | |
RNAscope Probe—Mm-Fzd3 | ACD #404891 | |
RNAscope Probe—Mm-Fzd4 | ACD #404901 | |
RNAscope Probe—Mm-Fzd5 | ACD #404911 | |
RNAscope Probe—Mm-Fzd6 | ACD #404921 | |
RNAscope Probe—Mm-Fzd7 | ACD #404931 | |
RNAscope Probe—Mm-Fzd8 | ACD #404941 | |
RNAscope Probe—Mm-Fzd9 | ACD #404951 | |
RNAscope Probe—Mm-Fzd10 | ACD #315781 | |
RNAscope Probe—Mm-Krt20 | ACD #402301 | |
RNAscope Probe—Mm-Ly6a | ACD #427571 | |
RNAscope Probe—Mm-Pdgfra | ACD #480661 | |
RNAscope Probe—Mm-Ccl8 | ACD #546211 | |
RNAscope Probe—Mm-Cdkn3 | ACD #401701 | |
Antibodies, enzymatic kits | ||
Rabbit anti-Villin (SP145) | Abcam | ab130751 |
Rabbit anti-DCLK/DCAMKL1 (D2U3L) | Cell Signaling Technology | CST 62257 |
Rabbit anti-chromogranin A | Abcam | ab15160 |
Rabbit anti-ZO-1 (clone 1A12) | Thermo Fisher Scientific | 33-9100 |
Rabbit anti-Ki67 | Abcam | 15580 |
Rat anti-KI67 (clone SolA15) | Thermo Fisher Scientific | 14-5698-82 |
Rat anti-EPCAM-Alexa-488 (clone G8.8) | BioLegend | 118210 |
Rat anti-LY6A-Alexa-647 (clone E13-161.7) | BioLegend | 122518 |
Rat IgG2 Isotype control-Alexa-488 | BioLegend | 400525 |
FcR blocking Reagent | Miltenyi Biotec | 130-092-575 |
Donkey anti-rat IgG (H&L), highly cross-adsorbed secondary antibody, Alexa Fluor 488 | Thermo Fisher Scientific | A-21208 |
Anti-Green Fluorescence Protein (Anti-GFP) human IgG | Surrozen | |
hFc-RSPO2 | Surrozen | |
R2M3-26, bi-specific appended human IgG effector-less format | Surrozen | |
SZN-1326-p, bi-specific appended human IgG effector-less format (parental molecule of a clinical candidate SZN-1326) | Surrozen | |
1RC07-26, bi-specific appended human IgG effector-less format | Surrozen | |
RNAscope 2.5 HD Assay-Red | ACD Bio | |
RNAscope Mulitplex Fluorescent Reagent Kit, v2 Assay | ACD Bio | |
Zymo Direct-zol RNA Microprep | Zymo | R2062 |
MagMAX mirVana Total RNA Isolation Kit | Thermo Fisher Scientific | A27828 |
Applied Biosystems High-Capacity cDNA Reverse Transcription Kit | Thermo Fisher Scientific | 4368814 |
Applied Biosystems TaqMan Fast Advanced Master Mix | Thermo Fisher Scientific | 4444557 |
Chemicals, peptides, proteins | ||
DMEM/F12 | Thermo Fisher Scientific | 12634-010 |
DAPI | Thermo Fisher Scientific | D1306 |
Fetal bovine serum | Thermo Fisher Scientific | 10438-026 |
Liberase | Sigma | 05401127001 |
DNAse1 | Sigma | 04716728001 |
EDTA | Sigma | 03609 |
Phosphate-buffered saline | Thermo Fisher Scientific | 10010-023 |
HEPES | Thermo Fisher Scientific | J16924-AE |
Sodium pyruvate | Thermo Fisher Scientific | 11360-070 |
Pen-Strep | Thermo Fisher Scientific | 15140-122 |
Antibiotic/antimycotic 100× | Thermo Fisher Scientific | 15240-062 |
Hank’s Balanced Salt Solution | Thermo Fisher Scientific | 14175-079 |
TrypLE | Thermo Fisher Scientific | 12604-013 |
Triton X-100 | ACROS Organics | 21568-2500 |
TSA Plus Cyanine 3 System | Akoya Bioscience | NEL744001KT |
TSA Plus cyanine 5 System | Akoya Bioscience | NEL745001KT |
Vectashield Vibrance antifade mounting medium with DAPI | Vector Laboratories | H-1800 |
Animal Husbandry
DSS-Induced Acute Colitis
Tissue Histology
Immunohistochemistry and Indirect Immunofluorescence
RNA In Situ Hybridization
RNA Isolation and RT-qPCR
Affinity Measurements
STF Assay
Organoid Culture and Proliferation Assay
Fluorescence-Activated Cell Sorting
scRNA-seq: Tissue Dissociation, Cell Isolation, Library Preparation, Sequencing
scRNA-seq Analysis
Raredon MSB, Yang J, Garritano J, Wang M, Kushnir D, Schupp JC, Adams TS, Greaney AM, Leiby KL, Kaminski N, Kluger Y, Levchenko A, Niklason LE. Connectome: computation and visualization of cell-cell signaling topologies in single-cell systems data. bioRxiv, https://doi.org/10.1101/2021.01.21.427529.
- Gougelet A.
- Torre C.
- Veber P.
- Sartor C.
- Bachelot L.
- Denechaud P.D.
- Godard C.
- Moldes M.
- Burnol A.F.
- Dubuquoy C.
- Terris B.
- Guillonneau F.
- Ye T.
- Schwarz M.
- Braeuning A.
- Perret C.
- Colnot S.
Epithelial Cell Annotation
- Powell A.E.
- Wang Y.
- Li Y.
- Poulin E.J.
- Means A.L.
- Washington M.K.
- Higginbotham J.N.
- Juchheim A.
- Prasad N.
- Levy S.E.
- Guo Y.
- Shyr Y.
- Aronow B.J.
- Haigis K.M.
- Franklin J.L.
- Coffey R.J.
- Yui S.
- Azzolin L.
- Maimets M.
- Pedersen M.T.
- Fordham R.P.
- Hansen S.L.
- Larsen H.L.
- Guiu J.
- Alves M.R.P.
- Rundsten C.F.
- Johansen J.V.
- Li Y.
- Madsen C.D.
- Nakamura T.
- Watanabe M.
- Nielsen O.H.
- Schweiger P.J.
- Piccolo S.
- Jensen K.B.
- Sasaki N.
- Sachs N.
- Wiebrands K.
- Ellenbroek S.I.
- Fumagalli A.
- Lyubimova A.
- Begthel H.
- van den Born M.
- van Es J.H.
- Karthaus W.R.
- Li V.S.
- López-Iglesias C.
- Peters P.J.
- van Rheenen J.
- van Oudenaarden A.
- Clevers H.
- Billing L.J.
- Larraufie P.
- Lewis J.
- Leiter A.
- Li J.
- Lam B.
- Yeo G.S.
- Goldspink D.A.
- Kay R.G.
- Gribble F.M.
- Reimann F.
- Billing L.J.
- Larraufie P.
- Lewis J.
- Leiter A.
- Li J.
- Lam B.
- Yeo G.S.
- Goldspink D.A.
- Kay R.G.
- Gribble F.M.
- Reimann F.
- Cox C.B.
- Storm E.E.
- Kapoor V.N.
- Chavarria-Smith J.
- Lin D.L.
- Wang L.
- Li Y.
- Kljavin N.
- Ota N.
- Bainbridge T.W.
- Anderson K.
- Roose-Girma M.
- Warming S.
- Arron J.R.
- Turley S.J.
- de Sauvage F.J.
- van Lookeren Campagne M.
Stromal Cell Annotation
- Muhl L.
- Genové G.
- Leptidis S.
- Liu J.
- He L.
- Mocci G.
- Sun Y.
- Gustafsson S.
- Buyandelger B.
- Chivukula I.V.
- Segerstolpe Å.
- Raschperger E.
- Hansson E.M.
- Björkegren J.L.M.
- Peng X.R.
- Vanlandewijck M.
- Lendahl U.
- Betsholtz C.
- Kinchen J.
- Chen H.H.
- Parikh K.
- Antanaviciute A.
- Jagielowicz M.
- Fawkner-Corbett D.
- Ashley N.
- Cubitt L.
- Mellado-Gomez E.
- Attar M.
- Sharma E.
- Wills Q.
- Bowden R.
- Richter F.C.
- Ahern D.
- Puri K.D.
- Henault J.
- Gervais F.
- Koohy H.
- Simmons A.
- Muhl L.
- Genové G.
- Leptidis S.
- Liu J.
- He L.
- Mocci G.
- Sun Y.
- Gustafsson S.
- Buyandelger B.
- Chivukula I.V.
- Segerstolpe Å.
- Raschperger E.
- Hansson E.M.
- Björkegren J.L.M.
- Peng X.R.
- Vanlandewijck M.
- Lendahl U.
- Betsholtz C.
- Kinchen J.
- Chen H.H.
- Parikh K.
- Antanaviciute A.
- Jagielowicz M.
- Fawkner-Corbett D.
- Ashley N.
- Cubitt L.
- Mellado-Gomez E.
- Attar M.
- Sharma E.
- Wills Q.
- Bowden R.
- Richter F.C.
- Ahern D.
- Puri K.D.
- Henault J.
- Gervais F.
- Koohy H.
- Simmons A.
- Smillie C.S.
- Biton M.
- Ordovas-Montanes J.
- Sullivan K.M.
- Burgin G.
- Graham D.B.
- Herbst R.H.
- Rogel N.
- Slyper M.
- Waldman J.
- Sud M.
- Andrews E.
- Velonias G.
- Haber A.L.
- Jagadeesh K.
- Vickovic S.
- Yao J.
- Stevens C.
- Dionne D.
- Nguyen L.T.
- Villani A.C.
- Hofree M.
- Creasey E.A.
- Huang H.
- Rozenblatt-Rosen O.
- Garber J.J.
- Khalili H.
- Desch A.N.
- Daly M.J.
- Ananthakrishnan A.N.
- Shalek A.K.
- Xavier R.J.
- Regev A.
Immune Cell Annotation
- Smillie C.S.
- Biton M.
- Ordovas-Montanes J.
- Sullivan K.M.
- Burgin G.
- Graham D.B.
- Herbst R.H.
- Rogel N.
- Slyper M.
- Waldman J.
- Sud M.
- Andrews E.
- Velonias G.
- Haber A.L.
- Jagadeesh K.
- Vickovic S.
- Yao J.
- Stevens C.
- Dionne D.
- Nguyen L.T.
- Villani A.C.
- Hofree M.
- Creasey E.A.
- Huang H.
- Rozenblatt-Rosen O.
- Garber J.J.
- Khalili H.
- Desch A.N.
- Daly M.J.
- Ananthakrishnan A.N.
- Shalek A.K.
- Xavier R.J.
- Regev A.
scRNA-seq Data Access
Acknowledgments
Data Availability Statement
CRediT authorship contributions
Supplementary Material
- Supplementary Table_1
- Supplementary Table_2
- Supplementary Table_3
- Supplementary Table_4
- Supplementary Table_5
- Supplementary Table_6
References
- Global burden of inflammatory bowel disease.Lancet Gastroenterol Hepatol. 2020; 5: 2-3
- Pathophysiology of inflammatory bowel diseases.N Engl J Med. 2020; 383: 2652-2664
- Ulcerative colitis.Nat Rev Dis Primers. 2020; 6: 74
- Histological remission in ulcerative colitis: under the microscope is the cure.Am J Gastroenterol. 2020; 115: 179-189
- Adalimumab therapy is associated with reduced risk of hospitalization in patients with ulcerative colitis.Gastroenterology. 2014; 146: 110-118.e3
- Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial.Gut. 2011; 60: 780-787
- Infliximab for induction and maintenance therapy for ulcerative colitis.N Engl J Med. 2005; 353: 2462-2476
- Vedolizumab vs adalimumab for moderate-to-severe ulcerative colitis.N Engl J Med. 2019; 381: 1215-1226
- Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell. 2017; 169: 985-999
- Wnt signaling and injury repair.Cold Spring Harb Perspect Biol. 2012; 4: a008078
- Structural basis of Wnt recognition by Frizzled.Science. 2012; 337: 59-64
- Development of potent, selective surrogate WNT molecules and their application in defining Frizzled requirements.Cell Chem Biol. 2020; 27: 598-609.e4
- Receptor subtype discrimination using extensive shape complementary designed interfaces.Nat Struct Mol Biol. 2019; 26: 407-414
- Development of selective bispecific Wnt mimetics for bone loss and repair.Nat Commun. 2021; 12: 3247
- Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling.Nature. 2017; 545: 234-237
- Next-generation surrogate Wnts support organoid growth and deconvolute Frizzled pleiotropy in vivo.Cell Stem Cell. 2020; 27: 840-851.e6
- Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice.Elife. 2019; 8: e46134
- Non-equivalence of Wnt and R-spondin ligands during Lgr5(+) intestinal stem-cell self-renewal.Nature. 2017; 545: 238-242
- R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling.Proc Natl Acad Sci U S A. 2011; 108: 11452-11457
- Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling.Nature. 2011; 476: 293-297
- LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling.EMBO Rep. 2011; 12: 1055-1061
- PDGFRα(+) pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo.Proc Natl Acad Sci U S A. 2018; 115: E3173-E3181
- Mitogenic influence of human R-spondin1 on the intestinal epithelium.Science. 2005; 309: 1256-1259
- R-spondin1, a novel intestinotrophic mitogen, ameliorates experimental colitis in mice.Gastroenterology. 2007; 132: 1331-1343
- Clinicopathologic study of dextran sulfate sodium experimental murine colitis.Lab Invest. 1993; 69: 238-249
- Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease.Cell. 2018; 175: 372-386.e17
- Intra- and inter-cellular rewiring of the human colon during ulcerative colitis.Cell. 2019; 178: 714-730.e22
- Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche.Nature. 2018; 559: 109-113
- YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration.Cell Stem Cell. 2018; 22: 35-49.e7
- Identification of novel human Wnt target genes using adult endodermal tissue-derived organoids.Dev Biol. 2021; 474: 37-47
- The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor.Cell. 2012; 149: 146-158
- HMGA proteins in stemness and differentiation of embryonic and adult stem cells.Int J Mol Sci. 2020; 21: 362
- Distinct roles of HES1 in normal stem cells and tumor stem-like cells of the intestine.Cancer Res. 2017; 77: 3442-3454
- The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells.Elife. 2014; 3: e03573
- Protocol to generate and characterize potent and selective WNT mimetic molecules.STAR Protoc. 2020; 1: 100043
- Wnt pathway regulation of intestinal stem cells.J Physiol. 2016; 594: 4837-4847
- A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells.Nat Chem Biol. 2018; 14: 582-590
- Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells.Stem Cell Rep. 2015; 4: 759-767
- Wnt signalling induces maturation of Paneth cells in intestinal crypts.Nat Cell Biol. 2005; 7: 381-386
- Acute inflammation regulates neuroregeneration through the NF-κB pathway in olfactory epithelium.Proc Natl Acad Sci U S A. 2017; 114: 8089-8094
- Acute inflammation initiates the regenerative response in the adult zebrafish brain.Science. 2012; 338: 1353-1356
- Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties.Cell. 2013; 152: 25-38
- Wnt signaling in adult intestinal stem cells and cancer.Cell Signal. 2014; 26: 570-579
- Chemically induced mouse models of acute and chronic intestinal inflammation.Na. Protoc. 2017; 12: 1295-1309
- Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.Genome Biol. 2016; 17: 75
- Identification of cell types from single-cell transcriptomes using a novel clustering method.Bioinformatics. 2015; 31: 1974-1980
- clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets.PLoS Comput Biol. 2018; 14e1006378
- From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.F1000Res. 2016; 5: 1438
- edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics. 2010; 26: 139-140
- ROAST: rotation gene set tests for complex microarray experiments.Bioinformatics. 2010; 26: 2176-2182
- SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics.Nucleic Acids Res. 2020; 48: e55
Raredon MSB, Yang J, Garritano J, Wang M, Kushnir D, Schupp JC, Adams TS, Greaney AM, Leiby KL, Kaminski N, Kluger Y, Levchenko A, Niklason LE. Connectome: computation and visualization of cell-cell signaling topologies in single-cell systems data. bioRxiv, https://doi.org/10.1101/2021.01.21.427529.
- Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.BMC Genomics. 2018; 19: 477
- T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice.Hepatology. 2014; 59: 2344-2357
- Identification of stem cells in small intestine and colon by marker gene Lgr5.Nature. 2007; 449: 1003-1007
- Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells.Stem Cells. 2013; 31: 2024-2030
- Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts.Cell Stem Cell. 2015; 16: 158-170
- Induction of the intestinal stem cell signature gene SMOC-2 is required for L1-mediated colon cancer progression.Oncogene. 2016; 35: 549-557
- Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell.Nature. 2019; 569: 121-125
- Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice.Gastroenterology. 2012; 142: 1195-1205.e6
- Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon.Proc Natl Acad Sci U S A. 2016; 113: E5399-E5407
- Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice—Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 coexpressing cells.Mol Metab. 2019; 29: 158-169
- CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.Proc Natl Acad Sci U S A. 2017; 114: E506-E513
- IL-1R1-dependent signaling coordinates epithelial regeneration in response to intestinal damage.Sci Immunol. 2021; 6eabe8856
- Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination.Nat Commun. 2020; 11: 3953
- Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis.PLoS Biol. 2020; 18e3001032
- Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche.Cell Mol Gastroenterol Hepatol. 2016; 2: 175-188
- Subepithelial telocytes are an important source of Wnts that supports intestinal crypts.Nature. 2018; 557: 242-246
- GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells.Nature. 2018; 558: 449-453
- A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles.J Physiol. 2011; 589: 697-710
- Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease.Cell Tissue Res. 2002; 310: 349-358
- Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration.Cell. 2009; 136: 1136-1147
- Dynamics of colon monocyte and macrophage activation during colitis.Front Immunol. 2018; 9: 2764
- Origin and development of dendritic cells.Immunol Rev. 2010; 234: 45-54
- Differential gene expression analysis identifies murine Cacnb3 as strongly upregulated in distinct dendritic cell populations upon stimulation.Gene. 2011; 472: 18-27
- The chemokine receptor CCR7 activates in dendritic cells 2 signaling modules that independently regulate chemotaxis and migratory speed.J Immunol. 2005; 174: 4070-4080
- Review article: the histological assessment of disease activity in ulcerative colitis.Aliment Pharmacol Ther. 2015; 42: 957-967
- Mucosal healing progression after acute colitis in mice.World J Gastroenterol. 2019; 25: 3572-3589
- The dual role of neutrophils in inflammatory bowel diseases.J Clin Med. 2016; 5: 118
- CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow.J Clin Invest. 2010; 120: 2423-2431
- Severe congenital neutropenia and chronic neutrophilic leukemia: an intriguing molecular connection unveiled by oncogenic mutations in CSF3R.Haematologica. 2013; 98: 1490-1492
Article info
Publication history
Footnotes
Conflicts of Interest All authors are current or former employees of Surrozen and shareholders of Surrozen stock.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy