Background & Aims
Methods
Results
Conclusions
Graphical abstract

Keywords
Abbreviations used in this paper:
β-NF (β-naphthoflavone), CC3 (cleaved caspase 3), EGF (epidermal growth factor), ELISA (enzyme-linked immunosorbent assay), FBS (fetal bovine serum), GI (gastrointestinal), IBD (inflammatory bowel disease), IEC (intestinal epithelial cell), IFN-γ (interferon gamma), IL (interleukin), ISC (intestinal stem cell), Lgr5 (leucine-rich repeat-containing G protein–coupled receptor 5), LPA (lysophosphatidic acid), LPAR (lysophosphatidic acid receptor), mRNA (messenger RNA), PBS (phosphate-buffered saline), PI3K (phosphoinositide 3-kinase), RT-PCR (reverse-transcription polymerase chain reaction), TA (transit amplifying), TAM (tamoxifen), tdT (tdTomato fluorescence protein), TNF-α (tumor necrosis factor α), TUNEL (terminal deoxynucleotide transferase–mediated deoxyuridine triphosphate nick-end labeling), WT (wild-type)- Biton M.
- Haber A.L.
- Rogel N.
- Burgin G.
- Beyaz S.
- Schnell A.
- Ashenberg O.
- Su C.W.
- Smillie C.
- Shekhar K.
- Chen Z.
- Wu C.
- Ordovas-Montanes J.
- Alvarez D.
- Herbst R.H.
- Zhang M.
- Tirosh I.
- Dionne D.
- Nguyen L.T.
- Xifaras M.E.
- Shalek A.K.
- von Andrian U.H.
- Graham D.B.
- Rozenblatt-Rosen O.
- Shi H.N.
- Kuchroo V.
- Yilmaz O.H.
- Regev A.
- Xavier R.J.
- Biton M.
- Haber A.L.
- Rogel N.
- Burgin G.
- Beyaz S.
- Schnell A.
- Ashenberg O.
- Su C.W.
- Smillie C.
- Shekhar K.
- Chen Z.
- Wu C.
- Ordovas-Montanes J.
- Alvarez D.
- Herbst R.H.
- Zhang M.
- Tirosh I.
- Dionne D.
- Nguyen L.T.
- Xifaras M.E.
- Shalek A.K.
- von Andrian U.H.
- Graham D.B.
- Rozenblatt-Rosen O.
- Shi H.N.
- Kuchroo V.
- Yilmaz O.H.
- Regev A.
- Xavier R.J.
Results
Inducible Deletion of Lpar5 Increases Mortality in Mice With Defects in the Gut

Loss of Lpar5 Causes Intestinal Crypt Cell Apoptosis


IEC-Specific Lpar5 Loss Does Not Cause Morbidity

Lpar5 Loss Reduces Clonal Expansion of ISCs
- Munoz J.
- Stange D.E.
- Schepers A.G.
- van de Wetering M.
- Koo B.K.
- Itzkovitz S.
- Volckmann R.
- Kung K.S.
- Koster J.
- Radulescu S.
- Myant K.
- Versteeg R.
- Sansom O.J.
- van Es J.H.
- Barker N.
- van Oudenaarden A.
- Mohammed S.
- Heck A.J.
- Clevers H.

Lpar5 Loss Increases CXCL10 Expression
- Lammers K.M.
- Lu R.
- Brownley J.
- Lu B.
- Gerard C.
- Thomas K.
- Rallabhandi P.
- Shea-Donohue T.
- Tamiz A.
- Alkan S.
- Netzel-Arnett S.
- Antalis T.
- Vogel S.N.
- Fasano A.

Layout of the cytokine blot | ||||||||
![]() | ||||||||
Pixel density values of each cytokine | ||||||||
---|---|---|---|---|---|---|---|---|
Coordinate | Target/Control | Control | KO | Mean Control | Mean KO | P Value | ||
1 | 2 | 1 | 2 | |||||
B1, B2 | BLC (CXCL13/BCA-1) | 0 | 0 | 0 | 0 | 0 | 0 | |
B3, B4 | C5/C5a | 228 | 219 | 140 | 174 | 223.5 | 157 | .407631 |
B5, B6 | G-CSF | 0 | 0 | 0 | 0 | 0 | 0 | |
B7, B8 | GM-CSF | 0 | 0 | 0 | 0 | 0 | 0 | |
B9, B10 | I-309 (CCL1/TCA-3) | 0 | 0 | 0 | 0 | 0 | 0 | |
B11, B12 | Eotaxin (CCL11) | 0 | 0 | 0 | 0 | 0 | 0 | |
B13, B14 | sICAM-1 (CD54) | 233 | 225 | 214 | 227 | 229 | 220.5 | .480965 |
B15, B16 | FN-ϒ | 96 | 81 | 58 | 44 | 88.5 | 51 | .407631 |
B17, B18 | IL-1a (IL-1F1) | 0 | 0 | 0 | 0 | 0 | 0 | |
B19, B20 | IL-1β (IL-1F2) | 0 | 0 | 0 | 0 | 0 | 0 | |
B21, B22 | IL-1ra (IL-1F3) | 230 | 222 | 208 | 217 | 226 | 212.5 | .480965 |
B23, B24 | IL-2 | 0 | 0 | 0 | 0 | 0 | 0 | |
C1, C2 | IL-3 | 0 | 0 | 0 | 0 | 0 | 0 | |
C3, C4 | IL-4 | 0 | 0 | 0 | 0 | 0 | 0 | |
C5, C6 | IL-5 | 0 | 0 | 0 | 0 | 0 | 0 | |
C7, C8 | IL-6 | 0 | 0 | 0 | 0 | 0 | 0 | |
C9, C10 | IL-7 | 0 | 0 | 0 | 0 | 0 | 0 | |
C11, C12 | IL-10 | 0 | 0 | 0 | 0 | 0 | 0 | |
C13, C14 | IL-13 | 0 | 0 | 0 | 0 | 0 | 0 | |
C15, C16 | IL-12 p70 | 0 | 0 | 0 | 0 | 0 | 0 | |
C17, C18 | IL-16 | 0 | 0 | 0 | 0 | 0 | 0 | |
C19, C20 | IL-17 | 0 | 0 | 0 | 0 | 0 | 0 | |
C21, C22 | IL-23 | 0 | 0 | 0 | 0 | 0 | 0 | |
C23, C24 | IL-27 | 0 | 0 | 0 | 0 | 0 | 0 | |
D1, D2 | CXCL10 (IP-10) | 101 | 105 | 242 | 238 | 103 | 240 | .004251 |
D3, D4 | CXCL11 (I-TAC) | 93 | 82 | 125 | 108 | 87.5 | 116.5 | .420357 |
D5, D6 | CXCL1 (KC) | 62 | 31 | 86 | 75 | 46.5 | 80.5 | .480965 |
D7, D8 | M-CSF | 0 | 0 | 0 | 0 | 0 | 0 | |
D9, D10 | CCL2/MCP-1 (JE) | 0 | 0 | 0 | 0 | 0 | 0 | |
D11, D12 | CCL12 (MCP-5) | 0 | 0 | 0 | 0 | 0 | 0 | |
D13, D14 | CXCL9 (MIG) | 0 | 0 | 0 | 0 | 0 | 0 | |
D15, D16 | MIP-1a (CCL3) | 0 | 0 | 0 | 0 | 0 | 0 | |
D17, D18 | MIP-1β (CCL4) | 0 | 0 | 0 | 0 | 0 | 0 | |
D19, D20 | MIP-2 (CXCL2) | 0 | 0 | 0 | 0 | 0 | 0 | |
D21, D22 | RANTES (CCL5) | 0 | 0 | 0 | 0 | 0 | 0 | |
D23, D24 | SDF-1 (CXCL12) | 126 | 168 | 68 | 83 | 147 | 75.5 | .413314 |
E1, E2 | TARC (CCL17) | 0 | 0 | 0 | 0 | 0 | 0 | |
E3, E4 | TIMP-1 | 143 | 126 | 85 | 67 | 134.5 | 76 | .32022 |
E5, E6 | TNF-a | 68 | 72 | 55 | 32 | 70 | 43.5 | .480965 |
E7, E8 | TREM-1 | 0 | 0 | 0 | 0 | 0 | 0 |
CXCL10 Induces LPA5-Dependent Epithelial Cell Apoptosis



LPA5-Expressing Splenocytes Protect Lpar5-Deficient IECs

- Biton M.
- Haber A.L.
- Rogel N.
- Burgin G.
- Beyaz S.
- Schnell A.
- Ashenberg O.
- Su C.W.
- Smillie C.
- Shekhar K.
- Chen Z.
- Wu C.
- Ordovas-Montanes J.
- Alvarez D.
- Herbst R.H.
- Zhang M.
- Tirosh I.
- Dionne D.
- Nguyen L.T.
- Xifaras M.E.
- Shalek A.K.
- von Andrian U.H.
- Graham D.B.
- Rozenblatt-Rosen O.
- Shi H.N.
- Kuchroo V.
- Yilmaz O.H.
- Regev A.
- Xavier R.J.
- Biton M.
- Haber A.L.
- Rogel N.
- Burgin G.
- Beyaz S.
- Schnell A.
- Ashenberg O.
- Su C.W.
- Smillie C.
- Shekhar K.
- Chen Z.
- Wu C.
- Ordovas-Montanes J.
- Alvarez D.
- Herbst R.H.
- Zhang M.
- Tirosh I.
- Dionne D.
- Nguyen L.T.
- Xifaras M.E.
- Shalek A.K.
- von Andrian U.H.
- Graham D.B.
- Rozenblatt-Rosen O.
- Shi H.N.
- Kuchroo V.
- Yilmaz O.H.
- Regev A.
- Xavier R.J.

Discussion
- Powell A.E.
- Wang Y.
- Li Y.
- Poulin E.J.
- Means A.L.
- Washington M.K.
- Higginbotham J.N.
- Juchheim A.
- Prasad N.
- Levy S.E.
- Guo Y.
- Shyr Y.
- Aronow B.J.
- Haigis K.M.
- Franklin J.L.
- Coffey R.J.
- Haber A.L.
- Biton M.
- Rogel N.
- Herbst R.H.
- Shekhar K.
- Smillie C.
- Burgin G.
- Delorey T.M.
- Howitt M.R.
- Katz Y.
- Tirosh I.
- Beyaz S.
- Dionne D.
- Zhang M.
- Raychowdhury R.
- Garrett W.S.
- Rozenblatt-Rosen O.
- Shi H.N.
- Yilmaz O.
- Xavier R.J.
- Regev A.
- Powell A.E.
- Wang Y.
- Li Y.
- Poulin E.J.
- Means A.L.
- Washington M.K.
- Higginbotham J.N.
- Juchheim A.
- Prasad N.
- Levy S.E.
- Guo Y.
- Shyr Y.
- Aronow B.J.
- Haigis K.M.
- Franklin J.L.
- Coffey R.J.
- Haber A.L.
- Biton M.
- Rogel N.
- Herbst R.H.
- Shekhar K.
- Smillie C.
- Burgin G.
- Delorey T.M.
- Howitt M.R.
- Katz Y.
- Tirosh I.
- Beyaz S.
- Dionne D.
- Zhang M.
- Raychowdhury R.
- Garrett W.S.
- Rozenblatt-Rosen O.
- Shi H.N.
- Yilmaz O.
- Xavier R.J.
- Regev A.
- Walrath T.
- Malizia R.A.
- Zhu X.
- Sharp S.P.
- D'Souza S.S.
- Lopez-Soler R.
- Parr B.
- Kartchner B.
- Lee E.C.
- Stain S.C.
- Iwakura Y.
- O'Connor Jr., W.
- Biton M.
- Haber A.L.
- Rogel N.
- Burgin G.
- Beyaz S.
- Schnell A.
- Ashenberg O.
- Su C.W.
- Smillie C.
- Shekhar K.
- Chen Z.
- Wu C.
- Ordovas-Montanes J.
- Alvarez D.
- Herbst R.H.
- Zhang M.
- Tirosh I.
- Dionne D.
- Nguyen L.T.
- Xifaras M.E.
- Shalek A.K.
- von Andrian U.H.
- Graham D.B.
- Rozenblatt-Rosen O.
- Shi H.N.
- Kuchroo V.
- Yilmaz O.H.
- Regev A.
- Xavier R.J.
- Biton M.
- Haber A.L.
- Rogel N.
- Burgin G.
- Beyaz S.
- Schnell A.
- Ashenberg O.
- Su C.W.
- Smillie C.
- Shekhar K.
- Chen Z.
- Wu C.
- Ordovas-Montanes J.
- Alvarez D.
- Herbst R.H.
- Zhang M.
- Tirosh I.
- Dionne D.
- Nguyen L.T.
- Xifaras M.E.
- Shalek A.K.
- von Andrian U.H.
- Graham D.B.
- Rozenblatt-Rosen O.
- Shi H.N.
- Kuchroo V.
- Yilmaz O.H.
- Regev A.
- Xavier R.J.
- van Meeteren L.A.
- Ruurs P.
- Stortelers C.
- Bouwman P.
- van Rooijen M.A.
- Pradere J.P.
- Pettit T.R.
- Wakelam M.J.
- Saulnier-Blache J.S.
- Mummery C.L.
- Moolenaar W.H.
- Jonkers J.
- Hozumi H.
- Hokari R.
- Kurihara C.
- Narimatsu K.
- Sato H.
- Sato S.
- Ueda T.
- Higashiyama M.
- Okada Y.
- Watanabe C.
- Komoto S.
- Tomita K.
- Kawaguchi A.
- Nagao S.
- Miura S.
- Ellinghaus D.
- Folseraas T.
- Holm K.
- Ellinghaus E.
- Melum E.
- Balschun T.
- Laerdahl J.K.
- Shiryaev A.
- Gotthardt D.N.
- Weismuller T.J.
- Schramm C.
- Wittig M.
- Bergquist A.
- Bjornsson E.
- Marschall H.U.
- Vatn M.
- Teufel A.
- Rust C.
- Gieger C.
- Wichmann H.E.
- Runz H.
- Sterneck M.
- Rupp C.
- Braun F.
- Weersma R.K.
- Wijmenga C.
- Ponsioen C.Y.
- Mathew C.G.
- Rutgeerts P.
- Vermeire S.
- Schrumpf E.
- Hov J.R.
- Manns M.P.
- Boberg K.M.
- Schreiber S.
- Franke A.
- Karlsen T.H.
- Imielinski M.
- Baldassano R.N.
- Griffiths A.
- Russell R.K.
- Annese V.
- Dubinsky M.
- Kugathasan S.
- Bradfield J.P.
- Walters T.D.
- Sleiman P.
- Kim C.E.
- Muise A.
- Wang K.
- Glessner J.T.
- Saeed S.
- Zhang H.
- Frackelton E.C.
- Hou C.
- Flory J.H.
- Otieno G.
- Chiavacci R.M.
- Grundmeier R.
- Castro M.
- Latiano A.
- Dallapiccola B.
- Stempak J.
- Abrams D.J.
- Taylor K.
- McGovern D.
- Heyman M.B.
- Ferry G.D.
- Kirschner B.
- Lee J.
- Essers J.
- Grand R.
- Stephens M.
- Levine A.
- Piccoli D.
- Van Limbergen J.
- Cucchiara S.
- Monos D.S.
- Guthery S.L.
- Denson L.
- Wilson D.C.
- Grant S.F.A.
- Daly M.
- Silverberg M.S.
- Satsangi J.
- Hakonarson H.
- Kaya B.
- Donas C.
- Wuggenig P.
- Diaz O.E.
- Morales R.A.
- Melhem H.
- Swiss I.B.D.C.I.
- Hernandez P.P.
- Kaymak T.
- Das S.
- Hruz P.
- Franc Y.
- Geier F.
- Ayata C.K.
- Villablanca E.J.
- Niess J.H.
Materials and Methods
Mice
Intestinal Crypt Isolation and 3-Dimensional Culture of Enteroids
Enzyme-Linked Immunosorbent Assay
Treatment of Enteroids With Anti-CXCL10 Antibody and CXCR3 Inhibitor
Treatment of Mice With Anti-CXCL10 Antibody
Co-Culture of Enteroids With Splenocytes
Treatment of Enteroids With IL-10 or Anti-IL-10 Antibody
Quantitative RT-PCR
5′-3′ | ||
---|---|---|
Lpar5 | Forward | GCTCCAGTGCCCTGACTATC |
Reverse | GGGAAGTGACAGGGTGAAGA | |
Cxcr3 | Forward | TGCTAGATGCCTCGGACTTT |
Reverse | CGCTGACTCAGTAGCACAGC | |
Cxcl9 | Forward | AAAATTTCATCACGCCCTTG |
Reverse | TCTCCAGCTTGGTGAGGTCT | |
Cxcl10 | Forward | CCCACGTGTTGAGATCATTG |
Reverse | CACTGGGTAAAGGGGAGTGA | |
Cxcl11 | Forward | AGTAACGGCTGCGACAAAGT |
Reverse | GCATGTTCCAAGACAGCAGA | |
Il-10 | Forward | AGCCGGGAAGACAATAACTG |
Reverse | TCATTTCCGATAAGGCTTGG | |
Lgr5 | Forward | CACCAGCTTACCCCATGACT |
Reverse | CTCCTGCTCTAAGGCACCAC | |
Olfm4 | Forward | GCCAGATCTTGGCTCTGAAG |
Reverse | GCCAGTTGAGCTGAATCACA | |
Somc2 | Forward | ACACTCTGGACCGAGCAAGT |
Reverse | GCATTGCACTGGCTTGTAGA | |
Ascl2 | Forward | GGTGACTCCTGGTGGACCTA |
Reverse | TCCGGAAGATGGAAGATGTC | |
β-actin | Forward | AGCCATGTACGTAGCCATCC |
Reverse | TCTCAGCTGTGGTGGTGAAG |
Cytokine Array
Immunohistochemistry
Immunofluorescence, EdU, and TUNEL Staining
Statistical Analysis
Acknowledgments
CRediT Authorship Contribution
References
- The intestinal stem cell.Genes Dev. 2008; 22: 1856-2864
- Cellular and molecular architecture of the intestinal stem cell niche.Nat Cell Biol. 2020; 22: 1033-2041
- T helper cell cytokines modulate intestinal stem cell renewal and differentiation.Cell. 2018; 175: 1307-2320 e1322
- Biochemical characterization of a gamma interferon-inducible cytokine (IP-10).J Exp Med. 1987; 166: 1084-2097
- Cxcl10(+) monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation.Nat Immunol. 2020; 21: 525-534
- Tumor necrosis factor (TNF)-alpha induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-kappaB p65 methylation.J Biol Chem. 2014; 289: 15328-25339
- Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells.Gastroenterology. 2001; 120: 49-59
- Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease.PLoS One. 2014; 9e89068
- CXCL10-CXCR3 interactions play an important role in the pathogenesis of acute graft-versus-host disease in the skin following allogeneic stem-cell transplantation.Blood. 2007; 110: 3827-3832
- Enhanced expression of CXCL10 in inflammatory bowel disease: potential role of mucosal Toll-like receptor 3 stimulation.Inflamm Bowel Dis. 2013; 19: 265-274
- Anti-interferon-inducible chemokine, CXCL10, reduces colitis by impairing T helper-1 induction and recruitment in mice.Inflamm Bowel Dis. 2005; 11: 799-805
- Blockade of CXCL10 protects mice from acute colitis and enhances crypt cell survival.Eur J Immunol. 2002; 32: 3197-3205
- Current knowledge on the biology of lysophosphatidylserine as an emerging bioactive lipid.Cell Biochem Biophys. 2021; 79: 497-508
- GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5.J Biol Chem. 2006; 281: 23589-23597
- Lysophosphatidic acid induces Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholipase C pathway.Cell Signal. 2009; 21: 523-528
- Lysophosphatidic acid receptor is a functional marker of adult hippocampal precursor cells.Stem Cell Rep. 2016; 6: 552-565
- Lysophosphatidic acid receptor 1 specifically labels seizure-induced hippocampal reactive neural stem cells and regulates their division.Front Neurosci. 2020; 14: 811
- LPA signaling acts as a cell-extrinsic mechanism to initiate cilia disassembly and promote neurogenesis.Nat Commun. 2021; 12: 662
- Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment.PLoS One. 2013; 8e63718
- Role of lysophosphatidic acid in proliferation and differentiation of intestinal epithelial cells.PLoS One. 2019; 14e0215255
- Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes.Am J Physiol Gastrointest Liver Physiol. 2007; 292: G98-G112
- Lysophosphatidic acid stimulates the intestinal brush border Na+/H+ exchanger 3 and fluid absorption via LPA5 and NHERF2.Gastroenterology. 2010; 138: 649-658
- Expression of lysophosphatidic acid receptor 5 is necessary for the regulation of intestinal Na(+)/H(+) exchanger 3 by lysophosphatidic acid in vivo.Am J Physiol Gastrointest Liver Physiol. 2018; 315: G433-G442
- Control of intestinal epithelial permeability by lysophosphatidic acid receptor 5.Cell Mol Gastroenterol Hepatol. 2021; 12: 1073-2092
- GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells.Am J Physiol Gastrointest Liver Physiol. 2007; 292: G1366-G1375
- Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system.Am J Physiol Gastrointest Liver Physiol. 2014; 306: G686-G698
- Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain.J Biol Chem. 2012; 287: 17608-27617
- Genome toxicity and impaired stem cell function after conditional activation of CreER(T2) in the intestine.Stem Cell Rep. 2018; 11: 1337-2346
- LPA5 is an inhibitory receptor that suppresses CD8 T-cell cytotoxic function via disruption of early TCR signaling.Front Immunol. 2019; 10: 1159
- LPA5 is abundantly expressed by human mast cells and important for lysophosphatidic acid induced MIP-1β release.PLoS One. 2011; 6e18192
- Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265
- Inducible cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin.Gastroenterology. 2004; 126: 1236-2246
- Robust cre-mediated recombination in small intestinal stem cells utilizing the olfm4 locus.Stem Cell Rep. 2014; 3: 234-241
- Identification of stem cells in small intestine and colon by marker gene Lgr5.Nature. 2007; 449: 1003-2007
- The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers.EMBO J. 2012; 31: 3079-3091
- Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells.Cell Stem Cell. 2020; 26: 377-390.e6
- Regulation of immunity by lysosphingolipids and their G protein-coupled receptors.J Clin Invest. 2004; 114: 1531-2537
- CXCL10-induced cell death in neurons: role of calcium dysregulation.Eur J Neurosci. 2006; 23: 957-964
- CXCL10 contributes to p38-mediated apoptosis in primary T lymphocytes in vitro.Cytokine. 2012; 59: 433-441
- Proapoptotic effects of the chemokine, CXCL 10 are mediated by the noncognate receptor TLR4 in hepatocytes.Hepatology. 2013; 57: 797-805
- Stromal cell-derived factor-1 is essential for photoreceptor cell protection in retinal detachment.Am J Pathol. 2010; 177: 2268-2277
- A potent human C5a receptor antagonist protects against disease pathology in a rat model of inflammatory bowel disease.J Immunol. 2003; 171: 5514-5520
- Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.Gastroenterology. 2008; 135: 194-204 e193
- Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins.Nature. 1985; 315: 672-676
- Interferon-gamma at the crossroads of tumor immune surveillance or evasion.Fronti Immunol. 2018; 9: 847
- Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands.Front Immunol. 2017; 8: 1970
- T cell Recruitment to the Intestinal Stem Cell Compartment Drives immune-mediated intestinal damage after allogeneic transplantation.Immunity. 2019; 51: 90-203.e3
- Reserve stem cells in intestinal homeostasis and injury.Gastroenterology. 2018; 155: 1348-2361
- The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor.Cell. 2012; 149: 146-258
- A single-cell survey of the small intestinal epithelium.Nature. 2017; 551: 333-339
- A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable.Nature. 2011; 478: 255-259
- A constant pool of Lgr5(+) intestinal stem cells is required for intestinal homeostasis.Cell Rep. 2021; 34: 108633
- Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2.Am J Physiol Cell Physiol. 2015; 309: C14-C21
- Lysophosphatidic acid 5 receptor induces activation of Na(+)/H(+) exchanger 3 via apical epidermal growth factor receptor in intestinal epithelial cells.Am J Physiol Cell Physiol. 2011; 301: C1008-C1016
- The emerging role of lysophosphatidic acid in cancer.Nat Rev Cancer. 2003; 3: 582-591
- Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling.Cell. 2012; 150: 780-791
- LPA receptor signaling: pharmacology, physiology, and pathophysiology.J Lipid Res. 2014; 55: 1192-2214
- High levels of CXCL10 are produced by intestinal epithelial cells in AIDS patients with active cryptosporidiosis but not after reconstitution of immunity.Infect Immun. 2007; 75: 481-487
- IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking.J Immunol. 2002; 168: 3195-3204
- CD8+ T cells produce the chemokine CXCL10 in response to CD27/CD70 costimulation to promote generation of the CD8+ effector T cell pool.J Immunol. 2013; 191: 3025-3036
- Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB+ CD8+ T-cell infiltration.Oncotarget. 2015; 6: 2981-2991
- Synergistic expression of the CXCL10 gene in response to IL-1beta and IFN-gamma involves NF-kappaB, phosphorylation of STAT1 at Tyr701, and acetylation of histones H3 and H4.J Immunol. 2013; 191: 323-336
- Pharmacokinetic and pharmacodynamic relationship of AMG 811, an anti-IFN-gamma IgG1 monoclonal antibody, in patients with systemic lupus erythematosus.Pharm Res. 2015; 32: 640-653
- IFN-gamma and IL-17A regulate intestinal crypt production of CXCL10 in the healthy and inflamed colon.Am J Physiol Gastrointest Liver Physiol. 2020; 318: G479-G489
- Interleukin-10 suppresses IP-10 gene transcription by inhibiting the production of class I interferon.Blood. 1998; 92: 4742-4749
- Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-alpha synthesis in Mvarphis stimulated with LPS.J Leukoc Biol. 2019; 106: 1285-2301
- Small-molecule lysophosphatidic acid receptor 5 (LPAR5) antagonists: versatile pharmacological tools to regulate inflammatory signaling in BV-2 microglia cells.Front Cell Neurosci. 2019; 13: 531
- Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development.Mol Cell Biol. 2006; 26: 5015-5022
- ATX expression and LPA signalling are vital for the development of the nervous system.Dev Biol. 2010; 339: 451-464
- Autotaxin determines colitis severity in mice and is secreted by B cells in the colon.FASEB J. 2019; 33: 3623-3635
- Genetic compensation: a phenomenon in search of mechanisms.PLoS Genet. 2017; 13e1006780
- Involvement of autotaxin/lysophospholipase D expression in intestinal vessels in aggravation of intestinal damage through lymphocyte migration.Lab Invest. 2013; 93: 508-519
- Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs.Nat Immunol. 2008; 9: 415-423
- Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4.Hepatology. 2013; 58: 1074-2083
- Common variants at five new loci associated with early-onset inflammatory bowel disease.Nat Genet. 2009; 41: 1335-2340
- GPR35 as a novel therapeutic target.Front Endocrinol (Lausanne). 2011; 2: 68
- Lysophosphatidic acid-mediated GPR35 signaling in CX3CR1(+) macrophages regulates intestinal homeostasis.Cell Rep. 2020; 32: 107979
- Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis.PLoS Med. 2020; 17e1003062
- Risk of Cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: a systematic review and meta-analysis.Clin Gastroenterol Hepatol. 2014; 12: 382-393.e381
- Increased risk of acute arterial events in young patients and severely active IBD: a nationwide French cohort study.Gut. 2018; 67: 1261-2268
- Association between chronic immune-mediated inflammatory diseases and cardiovascular risk.Heart. 2018; 104: 119-226
- Isolation and activation of murine lymphocytes.J Vis Exp. 2016; 116: 54596
- Distinct phospholipase C-beta isozymes mediate lysophosphatidic acid receptor 1 effects on intestinal epithelial homeostasis and wound closure.Mol. Cell. Biol. 2013; 33: 2016-2028
Article Info
Publication History
Footnotes
Conflicts of Interest The authors declare that there is nothing to disclose.
Funding This work was supported by the grant from the National Institutes of Health ( R01DK116799 ) and the Veterans Administration Merit Award ( I01BX004459 ). Confocal microscopic analyses were supported in part by the Integrated Cellular Imaging Shared Resources of Winship Cancer Institute of Emory University and National Institutes of Health / National Cancer Institute under award P30CA138292 .
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy