Keywords
Abbreviations used in this paper:
AFP (α-fetoprotein), AUC (area under the curve), ccf-mtDNA (circulating cell-free mitochondrial DNA), cfDNA (cell-free DNA), CNV (copy number variation), ctDNA (circulating tumor DNA), HBV (hepatitis B virus), HCC (hepatocellular carcinoma), HIFI (5-Hydroxymethylcytosine/motIf/Fragmentation/nucleosome footprInt), ICI (immune checkpoint inhibitor), MAF (mutant allele frequency), mtDNA (mitochondrial DNA), NGS (next generation sequencing), OS (overall survival), PCR (polymerase chain reaction), SNV (single-nucleotide variation), TERT (telomerase reverse transcriptase), VAF (variant allele frequency), 5hmC (5-hydroxymethylcytosine)Molecular Characteristics of ctDNA and Their Detection Technologies
- Deans Z.C.
- Butler R.
- Cheetham M.
- Dequeker E.M.C.
- Fairley J.A.
- Fenizia F.
- Hall J.A.
- Keppens C.
- Normanno N.
- Schuuring E.
- Patton S.J.
- Deans Z.C.
- Butler R.
- Cheetham M.
- Dequeker E.M.C.
- Fairley J.A.
- Fenizia F.
- Hall J.A.
- Keppens C.
- Normanno N.
- Schuuring E.
- Patton S.J.
Method | Sensitivity | Coverage | Variation | Advantage | Limitation |
---|---|---|---|---|---|
ddPCR | High | Specific and known regions | SNV, CNV, Meth | Rapid, sensitive | Relatively lower throughput; does not detect novel targets |
qPCR | High | Specific and known regions | SNV, CNV, Meth | Cheaper | Relatively lower throughput; does not detect novel targets |
WGS | Moderate | Whole genome | SNV, CNV, HBV, EM | Multiplex capabilities; detects novel variations; high-throughput detection | Relatively high cost; needs bioinformatics analysis support |
WES | Moderate | Whole exome | SNV, CNV, HBV, EM | Multiplex capabilities; detects novel variations; high-throughput detection | Relatively high cost; needs bioinformatics analysis support |
TS | Relatively high | Panel size | SNV, CNV, HBV, EM | Multiplex capabilities; detects novel variations; high-throughput detection | Relatively high cost; needs bioinformatics analysis support |
Molecular Landscapes of ctDNA in HCC
Reference | Variation | Cohort | Application | Mutation rate | Consistency | Sample source for cfDNA extraction (volume, mL) | Detection method |
---|---|---|---|---|---|---|---|
45 | SNV, PEC | 90 HCC, 67 H, 36 C, 32 NC | D | – | – | Plasma (4) | WGS |
49 | SNV, CNV, HBV | 481 HCC, 517 C | D | – | – | Blood (10) | WGS, HBV |
11 | SNV, CNV | 26 HCC | G, M | 89% | 50%–100% | Whole blood (20) | 68-gene TS/70-gene TS |
13 | SNV, CNV | 206 HCC | D | 88% | – | Whole blood (10) | 54-gene/68-gene/70-gene TS |
15 | SNV, CNV | 24 HCC | P | 96% | – | Plasma (2) | 74-gene TS |
20 | SNV, CNV | 34 HCC | P, M | 100% | – | Plasma (–) | TS, WGS |
22 | SNV, CNV | 187 HCC | G, P | – | – | Plasma (–) | TS |
25 | SNV, CNV | 14 HCC | G, P | 100% | – | Whole blood (20) | 68-gene TS, ddPCR |
58 | SNV, HBV | 65 HCC, 70 NC | D | – | – | Plasma (2) | TS |
10 | SNV | 48 HCC | D | 56% | 22% | Plasma (1) | ddPCR, SS |
12 | SNV | 51 HCC, 10 C | D | 35% | 29% | Plasma (1) | 7-gene TS |
14 | SNV | 26 HCC, 10 C, 10 H | D, P | 96% | 89% | Plasma (0.6–1.8) | 354-gene TS |
16 | SNV | 59 HCC | P | 56% | 97.3%–100% | Blood (10) | 69-gene TS, ddPCR |
19 | SNV | 41 HCC | P | 20% | – | Plasma (0.72) | 3-gene TS |
21 | SNV | 37 HCC | D | – | 52%–84% | Blood (10) | TS |
23 | SNV | 77 HCC, 8 C | G | 83% | 83% | Plasma (5), serum (1) | 25-gene TS, ddPCR, SS |
24 | SNV | 27 HCC | G | 96% | – | Plasma (–) | – |
51 | SNV | 8 HCC | D | 75% | 71% | Plasma (5), serum (1) | 58-gene TS |
65 | SNV | 895 HCC | P | 20%–42% | 92% | Whole blood (10) | ddPCR, 1-gene TS |
66 | SNV | 81 HCC | P | – | – | Plasma (–) | ddPCR, SS |
48 | Meth, HBV | 45 HCC, 18 C, 18 H, 36 NC | D, M | – | – | Whole blood (10) | WGBS |
38 | Meth | 104 HCC, 174 NC, 95 at-risk disease | D, P | – | – | Venous blood (10) | MSP |
39 | Meth | 25 HCC, 35 C or H, 20 NC | D, M | 92% | – | Plasma/serum (0.4) | MSP |
40 | Meth | 237 HCC | D, M | 37%–63% | – | Plasma (0.25) | Pyrosequencing, MSP |
41 | Meth | 50 HCC, 50 NC | D | 22%–70% | – | Blood (20) | MSP |
42 | Meth | 36 HCC, 17 C, 38 NC | D | – | – | Plasma (2) | MCTA-sequencing technique |
43 | Meth | 80 HCC, 40 C, 40 H, 20 NC | D | 34% | - | Serum (0.4) | MSP |
55 | Meth | 28 HCC | D | 89% | 68%–89% | Plasma (–) | MSP |
59 | Meth | 116 HCC, 60 C | D | – | – | Plasma (>1) | MSP |
61 | Meth | 144 HCC, 106 C | M | – | – | Plasma (1) | BS |
62 | Meth | 97 HCC, 46 H, 80 NC | D | – | – | Plasma (1.2–1.5) | ddPCR |
67 | Meth | 1098 HCC, 835 NC | D, P | – | – | Plasma (1.5) | BS |
68 | Meth | 68 NC, 66 H, 96 C, 109 HCC | D, M | – | – | Plasma (–) | MSP, BS |
47 | HBV | 50 HCC | D, M | 88% | – | Plasma (1) | TS |
50 | CNV, PEC, SNV | 10 NC, 10 H, 10 HCC | D | – | 100% | Plasma (2) | WGS, TS |
30 | CNV, EM | 63 HCC, 187 H | D | 94% | – | Plasma (–) | WGS |
46 | CNV, EM | 34 HCC, 17 H, 38 NC | D, M | – | – | Plasma (4) | BS |
29 | CNV | 151 HCC | G, P | 27% | – | Plasma (1.5) | WGS |
31 | CNV | 31 HCC, 8 H or C | D | 42% | – | Plasma (–) | – |
32 | CNV | 76 HCC, 274 NC | D, P | 57% | – | Plasma (2) | WGS |
33 | CNV | 90 HCC, 67 H, 36 C, 32 NC | D | 84% | 63% | Plasma (3–4.8) | WGS |
34 | CNV | 117 HCC | P | – | – | Plasma (–) | WGS |
74 | CNV | 1 HCC | G | – | – | Plasma (–) | – |
64 | 5hmC, EM | 2250 C, 508 HCC, 476 NC | D | – | – | Plasma (–) | 5hmC-sequencing, WGS |
57 | 5hmC | 1204 HCC, 392 H or C, 958 NC | D | – | – | Peripheral blood (5–10) | 5hmC-seal profiling |
SNVs
- Kaseb A.O.
- Sanchez N.S.
- Sen S.
- Kelley R.K.
- Tan B.
- Bocobo A.G.
- Lim K.H.
- Abdel-Wahab R.
- Uemura M.
- Pestana R.C.
- Qiao W.
- Xiao L.
- Morris J.
- Amin H.M.
- Hassan M.M.
- Rashid A.
- Banks K.C.
- Lanman R.B.
- Talasaz A.
- Mills-Shaw K.R.
- George B.
- Haque A.
- Raghav K.P.S.
- Wolff R.A.
- Yao J.C.
- Meric-Bernstam F.
- Ikeda S.
- Kurzrock R.
- Fujii Y.
- Ono A.
- Hayes C.N.
- Aikata H.
- Yamauchi M.
- Uchikawa S.
- Kodama K.
- Teraoka Y.
- Fujino H.
- Nakahara T.
- Murakami E.
- Miki D.
- Okamoto W.
- Kawaoka T.
- Tsuge M.
- Imamura M.
- Chayama K.
- Totoki Y.
- Tatsuno K.
- Covington K.R.
- Ueda H.
- Creighton C.J.
- Kato M.
- Tsuji S.
- Donehower L.A.
- Slagle B.L.
- Nakamura H.
- Yamamoto S.
- Shinbrot E.
- Hama N.
- Lehmkuhl M.
- Hosoda F.
- Arai Y.
- Walker K.
- Dahdouli M.
- Gotoh K.
- Nagae G.
- Gingras M.C.
- Muzny D.M.
- Ojima H.
- Shimada K.
- Midorikawa Y.
- Goss J.A.
- Cotton R.
- Hayashi A.
- Shibahara J.
- Ishikawa S.
- Guiteau J.
- Tanaka M.
- Urushidate T.
- Ohashi S.
- Okada N.
- Doddapaneni H.
- Wang M.
- Zhu Y.
- Dinh H.
- Okusaka T.
- Kokudo N.
- Kosuge T.
- Takayama T.
- Fukayama M.
- Gibbs R.A.
- Wheeler D.A.
- Aburatani H.
- Shibata T.
- Guichard C.
- Amaddeo G.
- Imbeaud S.
- Ladeiro Y.
- Pelletier L.
- Maad I.B.
- Calderaro J.
- Bioulac-Sage P.
- Letexier M.
- Degos F.
- Clement B.
- Balabaud C.
- Chevet E.
- Laurent A.
- Couchy G.
- Letouze E.
- Calvo F.
- Zucman-Rossi J.
- Kaseb A.O.
- Sanchez N.S.
- Sen S.
- Kelley R.K.
- Tan B.
- Bocobo A.G.
- Lim K.H.
- Abdel-Wahab R.
- Uemura M.
- Pestana R.C.
- Qiao W.
- Xiao L.
- Morris J.
- Amin H.M.
- Hassan M.M.
- Rashid A.
- Banks K.C.
- Lanman R.B.
- Talasaz A.
- Mills-Shaw K.R.
- George B.
- Haque A.
- Raghav K.P.S.
- Wolff R.A.
- Yao J.C.
- Meric-Bernstam F.
- Ikeda S.
- Kurzrock R.
- Fujii Y.
- Ono A.
- Hayes C.N.
- Aikata H.
- Yamauchi M.
- Uchikawa S.
- Kodama K.
- Teraoka Y.
- Fujino H.
- Nakahara T.
- Murakami E.
- Miki D.
- Okamoto W.
- Kawaoka T.
- Tsuge M.
- Imamura M.
- Chayama K.
- Yang X.
- Hu Y.
- Yang K.
- Wang D.
- Lin J.
- Long J.
- Xie F.
- Mao J.
- Bian J.
- Guan M.
- Pan J.
- Huo L.
- Hu K.
- Yang X.
- Mao Y.
- Sang X.
- Zhang J.
- Wang X.
- Zhang H.
- Zhao H.
- von Felden J.
- Craig A.J.
- Garcia-Lezana T.
- Labgaa I.
- Haber P.K.
- D'Avola D.
- Asgharpour A.
- Dieterich D.
- Bonaccorso A.
- Torres-Martin M.
- Sia D.
- Sung M.W.
- Tabrizian P.
- Schwartz M.
- Llovet J.M.
- Villanueva A.
- Lim H.Y.
- Merle P.
- Weiss K.H.
- Yau T.
- Ross P.
- Mazzaferro V.
- Blanc J.F.
- Ma Y.T.
- Yen C.J.
- Kocsis J.
- Choo S.P.
- Sukeepaisarnjaroen W.
- Gerolami R.
- Dufour J.F.
- Gane E.J.
- Ryoo B.Y.
- Peck-Radosavljevic M.
- Dao T.
- Yeo W.
- Lamlertthon W.
- Thongsawat S.
- Teufel M.
- Roth K.
- Reis D.
- Childs B.H.
- Krissel H.
- Llovet J.M.
- Javanmard D.
- Najafi M.
- Babaei M.R.
- Karbalaie Niya M.H.
- Esghaei M.
- Panahi M.
- Safarnezhad Tameshkel F.
- Tavakoli A.
- Jazayeri S.M.
- Ghaffari H.
- Ataei-Pirkooh A.
- Monavari S.H.
- Bokharaei-Salim F.

CNVs
- Yang X.
- Hu Y.
- Yang K.
- Wang D.
- Lin J.
- Long J.
- Xie F.
- Mao J.
- Bian J.
- Guan M.
- Pan J.
- Huo L.
- Hu K.
- Yang X.
- Mao Y.
- Sang X.
- Zhang J.
- Wang X.
- Zhang H.
- Zhao H.
- Oh C.R.
- Kong S.Y.
- Im H.S.
- Kim H.J.
- Kim M.K.
- Yoon K.A.
- Cho E.H.
- Jang J.H.
- Lee J.
- Kang J.
- Park S.R.
- Ryoo B.Y.
- Jin C.
- Liu X.
- Zheng W.
- Su L.
- Liu Y.
- Guo X.
- Gu X.
- Li H.
- Xu B.
- Wang G.
- Yu J.
- Zhang Q.
- Bao D.
- Wan S.
- Xu F.
- Lai X.
- Liu J.
- Xing J.
- Kaseb A.O.
- Sanchez N.S.
- Sen S.
- Kelley R.K.
- Tan B.
- Bocobo A.G.
- Lim K.H.
- Abdel-Wahab R.
- Uemura M.
- Pestana R.C.
- Qiao W.
- Xiao L.
- Morris J.
- Amin H.M.
- Hassan M.M.
- Rashid A.
- Banks K.C.
- Lanman R.B.
- Talasaz A.
- Mills-Shaw K.R.
- George B.
- Haque A.
- Raghav K.P.S.
- Wolff R.A.
- Yao J.C.
- Meric-Bernstam F.
- Ikeda S.
- Kurzrock R.
- Fujii Y.
- Ono A.
- Hayes C.N.
- Aikata H.
- Yamauchi M.
- Uchikawa S.
- Kodama K.
- Teraoka Y.
- Fujino H.
- Nakahara T.
- Murakami E.
- Miki D.
- Okamoto W.
- Kawaoka T.
- Tsuge M.
- Imamura M.
- Chayama K.
- Jin C.
- Liu X.
- Zheng W.
- Su L.
- Liu Y.
- Guo X.
- Gu X.
- Li H.
- Xu B.
- Wang G.
- Yu J.
- Zhang Q.
- Bao D.
- Wan S.
- Xu F.
- Lai X.
- Liu J.
- Xing J.
Methylation
- Oussalah A.
- Rischer S.
- Bensenane M.
- Conroy G.
- Filhine-Tresarrieu P.
- Debard R.
- Forest-Tramoy D.
- Josse T.
- Reinicke D.
- Garcia M.
- Luc A.
- Baumann C.
- Ayav A.
- Laurent V.
- Hollenbach M.
- Ripoll C.
- Gueant-Rodriguez R.M.
- Namour F.
- Zipprich A.
- Fleischhacker M.
- Bronowicki J.P.
- Gueant J.L.
Preferred End Motif or Coordinate
- Jiang P.
- Sun K.
- Tong Y.K.
- Cheng S.H.
- Cheng T.H.T.
- Heung M.M.S.
- Wong J.
- Wong V.W.S.
- Chan H.L.Y.
- Chan K.C.A.
- Lo Y.M.D.
- Chiu R.W.K.
- Jiang P.
- Sun K.
- Peng W.
- Cheng S.H.
- Ni M.
- Yeung P.C.
- Heung M.M.S.
- Xie T.
- Shang H.
- Zhou Z.
- Chan R.W.Y.
- Wong J.
- Wong V.W.S.
- Poon L.C.
- Leung T.Y.
- Lam W.K.J.
- Chan J.Y.K.
- Chan H.L.Y.
- Chan K.C.A.
- Chiu R.W.K.
- Lo Y.M.D.
- Jin C.
- Liu X.
- Zheng W.
- Su L.
- Liu Y.
- Guo X.
- Gu X.
- Li H.
- Xu B.
- Wang G.
- Yu J.
- Zhang Q.
- Bao D.
- Wan S.
- Xu F.
- Lai X.
- Liu J.
- Xing J.
HBV Integration
- Zheng B.
- Liu X.L.
- Fan R.
- Bai J.
- Wen H.
- Du L.T.
- Jiang G.Q.
- Wang C.Y.
- Fan X.T.
- Ye Y.N.
- Qian Y.S.
- Wang Y.C.
- Liu G.J.
- Deng G.H.
- Shen F.
- Hu H.P.
- Wang H.
- Zhang Q.Z.
- Ru L.L.
- Zhang J.
- Gao Y.H.
- Xia J.
- Yan H.D.
- Liang M.F.
- Yu Y.L.
- Sun F.M.
- Gao Y.J.
- Sun J.
- Zhong C.X.
- Wang Y.
- Kong F.
- Chen J.M.
- Zheng D.
- Yang Y.
- Wang C.X.
- Wu L.
- Hou J.L.
- Liu J.F.
- Wang H.Y.
- Chen L.
Mitochondrial DNA
Consistency Between Plasma and Tumor Tissue in HCC
- Labgaa I.
- Villacorta-Martin C.
- D'Avola D.
- Craig A.J.
- von Felden J.
- Martins-Filho S.N.
- Sia D.
- Stueck A.
- Ward S.C.
- Fiel M.I.
- Mahajan M.
- Tabrizian P.
- Thung S.N.
- Ang C.
- Friedman S.L.
- Llovet J.M.
- Schwartz M.
- Villanueva A.
- Rothwell D.G.
- Ayub M.
- Cook N.
- Thistlethwaite F.
- Carter L.
- Dean E.
- Smith N.
- Villa S.
- Dransfield J.
- Clipson A.
- White D.
- Nessa K.
- Ferdous S.
- Howell M.
- Gupta A.
- Kilerci B.
- Mohan S.
- Frese K.
- Gulati S.
- Miller C.
- Jordan A.
- Eaton H.
- Hickson N.
- O’Brien C.
- Graham D.
- Kelly C.
- Aruketty S.
- Metcalf R.
- Chiramel J.
- Tinsley N.
- Vickers A.J.
- Kurup R.
- Frost H.
- Stevenson J.
- Southam S.
- Landers D.
- Wallace A.
- Marais R.
- Hughes A.M.
- Brady G.
- Dive C.
- Krebs M.G.
- Heitzer E.
- Ulz P.
- Belic J.
- Gutschi S.
- Quehenberger F.
- Fischereder K.
- Benezeder T.
- Auer M.
- Pischler C.
- Mannweiler S.
- Pichler M.
- Eisner F.
- Haeusler M.
- Riethdorf S.
- Pantel K.
- Samonigg H.
- Hoefler G.
- Augustin H.
- Geigl J.B.
- Speicher M.R.
- Cai J.
- Chen L.
- Zhang Z.
- Zhang X.
- Lu X.
- Liu W.
- Shi G.
- Ge Y.
- Gao P.
- Yang Y.
- Ke A.
- Xiao L.
- Dong R.
- Zhu Y.
- Yang X.
- Wang J.
- Zhu T.
- Yang D.
- Huang X.
- Sui C.
- Qiu S.
- Shen F.
- Sun H.
- Zhou W.
- Zhou J.
- Nie J.
- Zeng C.
- Stroup E.K.
- Zhang X.
- Chiu B.C.
- Lau W.Y.
- He C.
- Wang H.
- Zhang W.
- Fan J.
- Zheng B.
- Liu X.L.
- Fan R.
- Bai J.
- Wen H.
- Du L.T.
- Jiang G.Q.
- Wang C.Y.
- Fan X.T.
- Ye Y.N.
- Qian Y.S.
- Wang Y.C.
- Liu G.J.
- Deng G.H.
- Shen F.
- Hu H.P.
- Wang H.
- Zhang Q.Z.
- Ru L.L.
- Zhang J.
- Gao Y.H.
- Xia J.
- Yan H.D.
- Liang M.F.
- Yu Y.L.
- Sun F.M.
- Gao Y.J.
- Sun J.
- Zhong C.X.
- Wang Y.
- Kong F.
- Chen J.M.
- Zheng D.
- Yang Y.
- Wang C.X.
- Wu L.
- Hou J.L.
- Liu J.F.
- Wang H.Y.
- Chen L.
Use of cfDNA in the Clinical Management of HCC
Detection and Diagnosis
- Qu C.
- Wang Y.
- Wang P.
- Chen K.
- Wang M.
- Zeng H.
- Lu J.
- Song Q.
- Diplas B.H.
- Tan D.
- Fan C.
- Guo Q.
- Zhu Z.
- Yin H.
- Jiang L.
- Chen X.
- Zhao H.
- He H.
- Wang Y.
- Li G.
- Bi X.
- Zhao X.
- Chen T.
- Tang H.
- Lv C.
- Wang D.
- Chen W.
- Zhou J.
- Zhao H.
- Cai J.
- Wang X.
- Wang S.
- Yan H.
- Zeng Y.X.
- Cavenee W.K.
- Jiao Y.
- Zheng B.
- Liu X.L.
- Fan R.
- Bai J.
- Wen H.
- Du L.T.
- Jiang G.Q.
- Wang C.Y.
- Fan X.T.
- Ye Y.N.
- Qian Y.S.
- Wang Y.C.
- Liu G.J.
- Deng G.H.
- Shen F.
- Hu H.P.
- Wang H.
- Zhang Q.Z.
- Ru L.L.
- Zhang J.
- Gao Y.H.
- Xia J.
- Yan H.D.
- Liang M.F.
- Yu Y.L.
- Sun F.M.
- Gao Y.J.
- Sun J.
- Zhong C.X.
- Wang Y.
- Kong F.
- Chen J.M.
- Zheng D.
- Yang Y.
- Wang C.X.
- Wu L.
- Hou J.L.
- Liu J.F.
- Wang H.Y.
- Chen L.
- Kisiel J.B.
- Dukek B.A.
- VSRK R.
- Ghoz H.M.
- Yab T.C.
- Berger C.K.
- Taylor W.R.
- Foote P.H.
- Giama N.H.
- Onyirioha K.
- Abdallah M.A.
- Burger K.N.
- Slettedahl S.W.
- Mahoney D.W.
- Smyrk T.C.
- Lewis J.T.
- Giakoumopoulos M.
- Allawi H.T.
- Lidgard G.P.
- Roberts L.R.
- Ahlquist D.A.
- Lewin J.
- Kottwitz D.
- Aoyama J.
- deVos T.
- Garces J.
- Hasinger O.
- Kasielke S.
- Knaust F.
- Rathi P.
- Rausch S.
- Weiss G.
- Zipprich A.
- Mena E.
- Fong T.L.
- Chalasani N.P.
- Ramasubramanian T.S.
- Bhattacharya A.
- Olson M.C.
- Edwards V.D.
- Roberts L.R.
- Kisiel J.B.
- Reddy K.R.
- Lidgard G.P.
- Johnson S.C.
- Bruinsma J.J.
- Cai J.
- Chen L.
- Zhang Z.
- Zhang X.
- Lu X.
- Liu W.
- Shi G.
- Ge Y.
- Gao P.
- Yang Y.
- Ke A.
- Xiao L.
- Dong R.
- Zhu Y.
- Yang X.
- Wang J.
- Zhu T.
- Yang D.
- Huang X.
- Sui C.
- Qiu S.
- Shen F.
- Sun H.
- Zhou W.
- Zhou J.
- Nie J.
- Zeng C.
- Stroup E.K.
- Zhang X.
- Chiu B.C.
- Lau W.Y.
- He C.
- Wang H.
- Zhang W.
- Fan J.
Prognostication
- Shen T.
- Li S.F.
- Wang J.L.
- Zhang T.
- Zhang S.
- Chen H.T.
- Xiao Q.Y.
- Ren W.H.
- Liu C.
- Peng B.
- Ji X.N.
- Yang Y.
- Lu P.X.
- Chen T.Y.
- Yu L.
- Ji Y.
- Jiang D.K.
- Fujii Y.
- Ono A.
- Hayes C.N.
- Aikata H.
- Yamauchi M.
- Uchikawa S.
- Kodama K.
- Teraoka Y.
- Fujino H.
- Nakahara T.
- Murakami E.
- Miki D.
- Okamoto W.
- Kawaoka T.
- Tsuge M.
- Imamura M.
- Chayama K.
- Labgaa I.
- Villacorta-Martin C.
- D'Avola D.
- Craig A.J.
- von Felden J.
- Martins-Filho S.N.
- Sia D.
- Stueck A.
- Ward S.C.
- Fiel M.I.
- Mahajan M.
- Tabrizian P.
- Thung S.N.
- Ang C.
- Friedman S.L.
- Llovet J.M.
- Schwartz M.
- Villanueva A.
- Yang X.
- Hu Y.
- Yang K.
- Wang D.
- Lin J.
- Long J.
- Xie F.
- Mao J.
- Bian J.
- Guan M.
- Pan J.
- Huo L.
- Hu K.
- Yang X.
- Mao Y.
- Sang X.
- Zhang J.
- Wang X.
- Zhang H.
- Zhao H.
- Oh C.R.
- Kong S.Y.
- Im H.S.
- Kim H.J.
- Kim M.K.
- Yoon K.A.
- Cho E.H.
- Jang J.H.
- Lee J.
- Kang J.
- Park S.R.
- Ryoo B.Y.
- Xu R.H.
- Wei W.
- Krawczyk M.
- Wang W.
- Luo H.
- Flagg K.
- Yi S.
- Shi W.
- Quan Q.
- Li K.
- Zheng L.
- Zhang H.
- Caughey B.A.
- Zhao Q.
- Hou J.
- Zhang R.
- Xu Y.
- Cai H.
- Li G.
- Hou R.
- Zhong Z.
- Lin D.
- Fu X.
- Zhu J.
- Duan Y.
- Yu M.
- Ying B.
- Zhang W.
- Wang J.
- Zhang E.
- Zhang C.
- Li O.
- Guo R.
- Carter H.
- Zhu J.K.
- Hao X.
- Zhang K.
- Zhao Y.
- Xue F.
- Sun J.
- Guo S.
- Zhang H.
- Qiu B.
- Geng J.
- Gu J.
- Zhou X.
- Wang W.
- Zhang Z.
- Tang N.
- He Y.
- Yu J.
- Xia Q.
Guiding Drug Administration
- Fujii Y.
- Ono A.
- Hayes C.N.
- Aikata H.
- Yamauchi M.
- Uchikawa S.
- Kodama K.
- Teraoka Y.
- Fujino H.
- Nakahara T.
- Murakami E.
- Miki D.
- Okamoto W.
- Kawaoka T.
- Tsuge M.
- Imamura M.
- Chayama K.
- Deans Z.C.
- Butler R.
- Cheetham M.
- Dequeker E.M.C.
- Fairley J.A.
- Fenizia F.
- Hall J.A.
- Keppens C.
- Normanno N.
- Schuuring E.
- Patton S.J.
Disease Monitoring
Barrier of Implementation of Liquid Biopsy by cfDNA Genotyping and Future Perspectives
Potential Challenges to Implementation
- Rolfo C.
- Mack P.C.
- Scagliotti G.V.
- Baas P.
- Barlesi F.
- Bivona T.G.
- Herbst R.S.
- Mok T.S.
- Peled N.
- Pirker R.
- Raez L.E.
- Reck M.
- Riess J.W.
- Sequist L.V.
- Shepherd F.A.
- Sholl L.M.
- Tan D.S.W.
- Wakelee H.A.
- Wistuba II,
- Wynes M.W.
- Carbone D.P.
- Hirsch F.R.
- Gandara D.R.
Toward Standardization in Liquid Biopsy of cfDNA Profiling
- Connors D.
- Allen J.
- Alvarez J.D.
- Boyle J.
- Cristofanilli M.
- Hiller C.
- Keating S.
- Kelloff G.
- Leiman L.
- McCormack R.
- Merino D.
- Morgan E.
- Pantel K.
- Rolfo C.
- Serrano M.J.
- Pia Sanzone A.
- Schlange T.
- Sigman C.
- Stewart M.
- Lampignano R.
- Neumann M.H.D.
- Weber S.
- Kloten V.
- Herdean A.
- Voss T.
- Groelz D.
- Babayan A.
- Tibbesma M.
- Schlumpberger M.
- Chemi F.
- Rothwell D.G.
- Wikman H.
- Galizzi J.P.
- Riise Bergheim I.
- Russnes H.
- Mussolin B.
- Bonin S.
- Voigt C.
- Musa H.
- Pinzani P.
- Lianidou E.
- Brady G.
- Speicher M.R.
- Pantel K.
- Betsou F.
- Schuuring E.
- Kubista M.
- Ammerlaan W.
- Sprenger-Haussels M.
- Schlange T.
- Heitzer E.
Further Studies and Future Perspective
Conclusions

References
- Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin. 2021; 71: 209-249
- Using cell-free DNA for HCC surveillance and prognosis.JHEP Rep. 2021; 3100304
- Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA.Mol Cancer. 2019; 18: 114
- Circulating tumor DNA and hepatocellular carcinoma.Semin Liver Dis. 2019; 39: 452-462
- Comparison of Roche Cell-Free DNA collection Tubes® to Streck Cell-Free DNA BCT® s for sample stability using healthy volunteers.Pract Lab Med. 2019; 16e00125
- Performance comparison of blood collection tubes as liquid biopsy storage system for minimizing cfDNA contamination from genomic DNA.J Clin Lab Anal. 2019; 33e22670
- What do we need to make circulating tumour DNA (ctDNA) a routine diagnostic test in lung cancer?.Eur J Cancer. 2017; 81: 66-73
- IQN path ASBL report from the first European cfDNA consensus meeting: expert opinion on the minimal requirements for clinical ctDNA testing.Virchows Arch. 2019; 474: 681-689
- Circulating tumor DNA mutation profiling by targeted next generation sequencing provides guidance for personalized treatments in multiple cancer types.Sci Rep. 2017; 7: 583
- Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity.J Cancer. 2016; 7: 1907-1914
- Analysis of tissue and circulating tumor DNA by next-generation sequencing of hepatocellular carcinoma: implications for targeted therapeutics.Mol Cancer Ther. 2018; 17: 1114-1122
- Identification of mutations in circulating cell-free tumour DNA as a biomarker in hepatocellular carcinoma.Eur J Cancer. 2019; 116: 56-66
- Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA.Clin Cancer Res. 2019; 25: 6107-6118
- The diagnostic and prognostic usage of circulating tumor DNA in operable hepatocellular carcinoma.Am J Transl Res. 2019; 11: 6462-6474
- Identification and monitoring of mutations in circulating cell-free tumor DNA in hepatocellular carcinoma treated with lenvatinib.J Exp Clin Cancer Res. 2021; 40: 215
- MLH1 single-nucleotide variant in circulating tumor DNA predicts overall survival of patients with hepatocellular carcinoma.Sci Rep. 2020; 1017862
- Trans-ancestry mutational landscape of hepatocellular carcinoma genomes.Nat Genet. 2014; 46: 1267-1273
- Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma.Nat Genet. 2012; 44: 694-698
- Noninvasive detection of tumor-associated mutations from circulating cell-free DNA in hepatocellular carcinoma patients by targeted deep sequencing.Oncotarget. 2016; 7: 40481-40490
- Comprehensive liquid profiling of circulating tumor DNA and protein biomarkers in long-term follow-up patients with hepatocellular carcinoma.Clin Cancer Res. 2019; 25: 5284-5294
- Detection of a novel panel of somatic mutations in plasma cell-free DNA and its diagnostic value in hepatocellular carcinoma.Cancer Manag Res. 2019; 11: 5745-5756
- Cell-free DNA copy number variations predict efficacy of immune checkpoint inhibitor-based therapy in hepatobiliary cancers.J Immunother Cancer. 2021; 9e001942
- Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma.Oncogene. 2021; 40: 140-151
- Phase II studies with refametinib or refametinib plus sorafenib in patients with RAS-mutated hepatocellular carcinoma.Clin Cancer Res. 2018; 24: 4650-4661
- Next-generation sequencing of circulating tumor DNA reveals frequent alterations in advanced hepatocellular carcinoma.Oncologist. 2018; 23: 586-593
- TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer.Oncogene. 2007; 26: 2166-2176
- Investigation of CTNNB1 gene mutations and expression in hepatocellular carcinoma and cirrhosis in association with hepatitis B virus infection.Infect Agent Cancer. 2020; 15: 37
- The role of telomeres and telomerase in cirrhosis and liver cancer.Nat Rev Gastroenterol Hepatol. 2019; 16: 544-558
- Genome-wide copy number alteration and VEGFA amplification of circulating cell-free DNA as a biomarker in advanced hepatocellular carcinoma patients treated with sorafenib.BMC Cancer. 2019; 19: 292
- Characterization of fragment sizes, copy number aberrations and 4-mer end motifs in cell-free DNA of hepatocellular carcinoma for enhanced liquid biopsy-based cancer detection.Mol Oncol. 2021; 15: 2377-2389
- Non-invasive analysis of genomic copy number variation in patients with hepatocellular carcinoma by next generation DNA sequencing.J Cancer. 2015; 6: 247-253
- Noninvasive detection of hepatocellular carcinoma with circulating tumor DNA features and alpha-fetoprotein.J Mol Diagn. 2021; 23: 1174-1184
- Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients.Proc Natl Acad Sci U S A. 2015; 112: E1317-E1325
- Multiple-level copy number variations in cell-free DNA for prognostic prediction of HCC with radical treatments.Cancer Sci. 2021; 112: 4772-4784
- Principles of DNA methylation and their implications for biology and medicine.Lancet. 2018; 392: 777-786
- The septin family of GTPases: architecture and dynamics.Nat Rev Mol Cell Biol. 2008; 9: 478-489
- Plasma mSEPT9: a novel circulating cell-free DNA-based epigenetic biomarker to diagnose hepatocellular carcinoma.EBioMedicine. 2018; 30: 138-147
- SEPT9 gene methylation as a noninvasive marker for hepatocellular carcinoma.Dis Markers. 2020; 20206289063
- Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients.Clin Cancer Res. 2000; 6: 3516-3521
- Plasma DNA methylation marker and hepatocellular carcinoma risk prediction model for the general population.Carcinogenesis. 2017; 38: 1021-1028
- Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA.Clin Cancer Res. 2007; 13: 2378-2384
- Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients.Cell Res. 2015; 25: 1250-1264
- Hypomethylated ubiquitin-conjugating enzyme2 Q1 (UBE2Q1) gene promoter in the serum is a promising biomarker for hepatitis B virus-associated hepatocellular carcinoma.Tohoku J Exp Med. 2017; 242: 93-100
- Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends.Proc Natl Acad Sci U S A. 2016; 113: E8159-E8168
- Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma.Proc Natl Acad Sci U S A. 2018; 115: E10925-E10933
- Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation.Cancer Discov. 2020; 10: 664-673
- Cell-free virus-host chimera DNA from hepatitis B virus integration sites as a circulating biomarker of hepatocellular cancer.Hepatology. 2020; 72: 2063-2076
- Hypomethylation in HBV integration regions aids non-invasive surveillance to hepatocellular carcinoma by low-pass genome-wide bisulfite sequencing.BMC Med. 2020; 18: 200
- The landscape of cell-free HBV integrations and mutations in cirrhosis and hepatocellular carcinoma patients.Clin Cancer Res. 2021; 27: 3772-3783
- NGS-based accurate and efficient detection of circulating cell-free mitochondrial DNA in cancer patients.Mol Ther Nucleic Acids. 2021; 23: 657-666
- A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma.Oncogene. 2018; 37: 3740-3752
- Genetic profiling using plasma-derived cell-free DNA in therapy-naive hepatocellular carcinoma patients: a pilot study.Ann Oncol. 2018; 29: 1286-1291
- Overexpression of EPS8L3 promotes cell proliferation by inhibiting the transactivity of FOXO1 in HCC.Neoplasma. 2018; 65: 701-707
- Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study.Nat Med. 2019; 25: 738-743
- Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing.Genome Med. 2013; 5: 30
- Concordance of DNA methylation pattern in plasma and tumor DNA of Egyptian hepatocellular carcinoma patients.Exp Mol Pathol. 2010; 88: 107-111
- High frequency of promoter hypermethylation of RASSF1A in tumor and plasma of patients with hepatocellular carcinoma.Liver Int. 2005; 25: 266-272
- Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma.Gut. 2019; 68: 2195-2205
- Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy.Proc Natl Acad Sci U S A. 2019; 116: 6308-6312
- Hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase I pilot, and phase II clinical validation.Hepatology. 2019; 69: 1180-1192
- DNA methylation biomarkers for diagnosis of primary liver cancer and distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma.Aging (Albany NY). 2021; 13: 17592-17606
- Plasma cell free DNA methylation markers for hepatocellular carcinoma surveillance in patients with cirrhosis: a case control study.BMC Gastroenterol. 2021; 21: 136
- Circulating tumour DNA methylation in hepatocellular carcinoma diagnosis using digital droplet PCR.J Int Med Res. 2021; 49300060521992962
- A novel blood-based panel of methylated DNA and protein markers for detection of early-stage hepatocellular carcinoma.Clin Gastroenterol Hepatol. 2021; 19: 2597-2605.e4
- Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients.Cell Res. 2021; 31: 589-592
- TP53 R249S mutation detected in circulating tumour DNA is associated with prognosis of hepatocellular carcinoma patients with or without hepatectomy.Liver Int. 2020; 40: 2834-2847
- Circulating tumor DNA correlates with microvascular invasion and predicts tumor recurrence of hepatocellular carcinoma.Ann Transl Med. 2020; 8: 237
- Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma.Nat Mater. 2017; 16: 1155-1161
- Genome-wide methylation profiling of the different stages of hepatitis B virus-related hepatocellular carcinoma development in plasma cell-free DNA reveals potential biomarkers for early detection and high-risk monitoring of hepatocellular carcinoma.Clin Epigenetics. 2014; 6: 30
- Serial surveillance by circulating tumor DNA profiling after chimeric antigen receptor T therapy for the guidance of r/r diffuse large B cell lymphoma precise treatment.J Cancer. 2021; 12: 5423-5431
- Durable complete response to alectinib in a lung adenocarcinoma patient with brain metastases and low-abundance EML4-ALK variant in liquid biopsy: a case report.Front Oncol. 2020; 10: 1259
- The labyrinth of product development and regulatory approvals in liquid biopsy diagnostics.Clin Transl Sci. 2019; 12: 431-439
- Combination treatment for advanced hepatocellular carcinoma with portal vein tumour thrombus: a case report.J Int Med Res. 2021; 49300060521994406
- Liquid biopsy enters the clinic - implementation issues and future challenges.Nat Rev Clin Oncol. 2021; 18: 297-312
- Liquid biopsies: potential and challenges.Int J Cancer. 2021; 148: 528-545
- Clinical application value of circulating cell-free DNA in hepatocellular carcinoma.Front Mol Biosci. 2021; 8736330
- Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC.J Thorac Oncol. 2018; 13: 1248-1268
- The pre-analytical phase of the liquid biopsy.N Biotechnol. 2020; 55: 19-29
- Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions.CA Cancer J Clin. 2021; 71: 176-190
- Optimization of preanalytical variables for cfDNA processing and detection of ctDNA in archival plasma samples.Biomed Res Int. 2021; 20215585148
- International liquid biopsy standardization alliance white paper.Crit Rev Oncol Hematol. 2020; 156103112
- Targets, pitfalls and reference materials for liquid biopsy tests in cancer diagnostics.Mol Aspects Med. 2020; 72: 100828
- Multicenter evaluation of circulating cell-free DNA extraction and downstream analyses for the development of standardized (pre)analytical work flows.Clin Chem. 2020; 66: 149-160
- External quality assurance of current technology for the testing of cancer-associated circulating free DNA variants.Pathol Oncol Res. 2020; 26: 1595-1603
- Liquid biopsies come of age: towards implementation of circulating tumour DNA.Nat Rev Cancer. 2017; 17: 223-238
Article Info
Publication History
Footnotes
Conflicts of interest The authors disclose no conflicts.
Funding This study was supported by the Hong Kong Research Grants Council Theme-based Research Scheme (T12-704/16-R), Innovation and Technology Commission grant for the State Key Laboratory of Liver Research, University Development Fund of The University of Hong Kong, and Loke Yew Endowed Professorship award. Irene Oi-Lin Ng is a Loke Yew Professor in Pathology.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy