Alcohol-associated liver disease (ALD) is a major public health concern, causing 0.9% of all deaths in 2010. In some cases, ALD can progress to alcoholic hepatitis, which presents as acute-on-chronic liver failure and has limited treatment options. Reports of changes in alcohol consumption and increases in severe ALD during the COVID-19 pandemic reinforce the urgent need to provide therapeutic targets and develop new treatments for ALD.

The importance of intestinal microbiota has been demonstrated in the initiation, progression, and severity of ALD. An elegant study using mice transplanted with intestinal microbiota from patients with alcoholic hepatitis suggest that intestinal microbiota is a causal factor for ALD. In addition, Wrzosek et al recently reported that treatment with pectin, a prebiotic fiber that alters intestinal microbiota composition, improved ALD in mice transplanted with humanized intestinal microbiota by increasing gut microbial production of tryptophan metabolites, many of which activate aryl hydrocarbon receptor (AHR), a widely expressed and conserved ligand-activated nuclear receptor. Studies using whole-body Ahr-knockout mice demonstrated that the efficacy of pectin treatment in a mouse ALD model was partially dependent on AHR, whereas ligand activation of AHR imitated the effect of pectin. Importantly, serum levels of tryptophan and its metabolites that act as AHR agonists are reduced in patients with severe alcoholic hepatitis compared with those with mild or moderate alcoholic hepatitis, and negatively correlate with disease severity, suggesting that restoration of AHR activation may be a therapeutic strategy for ALD.

However, it is not clear which cell types contribute to AHR-mediated protection against ALD because AHR is widely expressed.

In this issue of Cellular and Molecular Gastroenterology and Hepatology, by using intestinal epithelial cell (IEC)-specific Ahr knockout mice (AhrIEC), Qian et al demonstrated that AHR signaling in IEC plays an important role in ameliorating ALD. They found that ethanol consumption in mice and humans reduced intestinal expression of AHR. Ethanol feeding in AhrIEC mice increased liver injury and induced gut dysbiosis characterized by increases in Helicobacter hepaticus and Helicobacter faecalis and translocation to the mesenteric lymph nodes and liver compared with AhrIEC mice. Moreover, the authors also found that compared with wild-type mice, ethanol-fed AhrIEC mice had alteration of many metabolites in the gut, with notable elevation of short-chain fatty acid isobutyric acid (IBA). Administration of IBA exacerbated ethanol-induced liver injury and steatosis in mice, which is partly mediated via the upregulation of hepatic elongation of long-chain fatty acids (Elolv7) expression. Importantly, oral administration of AHR agonists ameliorated ALD in mice with upregulation of AHR-target genes in the intestine but not in the liver, providing intestinal AHR as a potential therapeutic target for ALD.

There are several important findings in the study by Qian et al that need further investigation to determine their significance in ALD. Although intraperitoneal administration of IBA alone induced liver injury, it is not clear whether intestinal IBA can reach the liver. Future studies should evaluate whether IBA administration via gavage induces liver injury in vivo and evaluate the impact of IBA generation on ALD. In addition, Elolv7 seems to be a promising target to limit ethanol-induced steatosis and deserves further study. In fact, hepatic ELOVL7 expression is upregulated in patients with alcoholic hepatitis compared with that in healthy control subjects, making ELOVL7 an even more intriguing target for further study.

In our opinion, intestinal AHR activation provides a novel approach to limit liver injury in ALD and perhaps limit progression to alcoholic hepatitis. It is important to note that mouse and human AHR may differ in their transcriptional regulation, and because AHR is widely expressed throughout the body, systemic activation may induce unwanted side effects. Alteration of intestinal microbiota in ALD provides another therapeutic avenue to increase intestinal AHR activation via microbial tryptophan metabolites and to
reduce metabolites that may exacerbate ALD. Well-designed clinical trials using fecal microbiota transplantation or AHR agonists in ALD are warranted because limited treatment options exist.

BRYAN MACKOWIAK
BIN GAO, MD, PhD
Laboratory of Liver Diseases
National Institute on Alcohol Abuse and Alcoholism
National Institutes of Health
Bethesda, Maryland

References


Pagán JC, Arroyo V, Ginès P, Caballería J, Schwabe RF, Bataller R. Transcriptome analysis identifies TNF superfam-

Correspondence
Address correspondence to: Bin Gao, MD, PhD, Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892. e-mail: bgao@mail.nih.gov.

Acknowledgments
The authors’ laboratory was supported by the intramural program of National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health.

Conflicts of interest
The authors disclose no conflicts.

© 2021 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jcmgh.2021.10.001