Background & Aims
Methods
Results
Conclusions
Graphical abstract

Keywords
Abbreviations used in this paper:
α-SMA (α smooth muscle actin), CAF (cancer-associated fibroblast), CAPaSC (cancer-associated pancreatic stellate cells), Cda (cytidine deaminase), Dck (deoxycytidine kinase), dFDC (2′,2′-difluorodeoxcytidine), dFdCTP (gemcitabine triphosphate), dFdU (2′,2′-difluorodeoxyuridine), Gem (gemcitabine), GEM (genetically engineered mouse), IGF1 (insulin-like growth factor 1), IGF1R (Insulin-like growth factor 1 receptor), KPC (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre), LSL (Lox-Stop-Lox), mRNA (messenger RNA), OrKPC (KPC 961 cell line), PDAC (pancreatic ductal adenocarcinoma), Shh (Sonic hedgehog), Tdk (Thymidine kinase)- Olive K.P.
- Jacobetz M.A.
- Davidson C.J.
- Gopinathan A.
- McIntyre D.
- Honess D.
- Madhu B.
- Goldgraben M.A.
- Caldwell M.E.
- Allard D.
- Frese K.K.
- Denicola G.
- Feig C.
- Combs C.
- Winter S.P.
- Ireland-Zecchini H.
- Reichelt S.
- Howat W.J.
- Chang A.
- Dhara M.
- Wang L.
- Rückert F.
- Grützmann R.
- Pilarsky C.
- Izeradjene K.
- Hingorani S.R.
- Huang P.
- Davies S.E.
- Plunkett W.
- Egorin M.
- Hruban R.H.
- Whitebread N.
- McGovern K.
- Adams J.
- Iacobuzio-Donahue C.
- Griffiths J.
- Tuveson D.A.
- Olive K.P.
- Jacobetz M.A.
- Davidson C.J.
- Gopinathan A.
- McIntyre D.
- Honess D.
- Madhu B.
- Goldgraben M.A.
- Caldwell M.E.
- Allard D.
- Frese K.K.
- Denicola G.
- Feig C.
- Combs C.
- Winter S.P.
- Ireland-Zecchini H.
- Reichelt S.
- Howat W.J.
- Chang A.
- Dhara M.
- Wang L.
- Rückert F.
- Grützmann R.
- Pilarsky C.
- Izeradjene K.
- Hingorani S.R.
- Huang P.
- Davies S.E.
- Plunkett W.
- Egorin M.
- Hruban R.H.
- Whitebread N.
- McGovern K.
- Adams J.
- Iacobuzio-Donahue C.
- Griffiths J.
- Tuveson D.A.
- Ozdemir B.C.
- Pentcheva-Hoang T.
- Carstens J.L.
- Zheng X.
- Wu C.C.
- Simpson T.R.
- Laklai H.
- Sugimoto H.
- Kahlert C.
- Novitskiy S.V.
- De Jesus-Acosta A.
- Sharma P.
- Heidari P.
- Mahmood U.
- Chin L.
- Moses H.L.
- Weaver V.M.
- Maitra A.
- Allison J.P.
- LeBleu V.S.
- Kalluri R.
- Rhim A.D.
- Oberstein P.E.
- Thomas D.H.
- Mirek E.T.
- Palermo C.F.
- Sastra S.A.
- Dekleva E.N.
- Saunders T.
- Becerra C.P.
- Tattersall I.W.
- Westphalen C.B.
- Kitajewski J.
- Fernandez-Barrena M.G.
- Fernandez-Zapico M.E.
- Iacobuzio-Donahue C.
- Olive K.P.
- Stanger B.Z.
- Ozdemir B.C.
- Pentcheva-Hoang T.
- Carstens J.L.
- Zheng X.
- Wu C.C.
- Simpson T.R.
- Laklai H.
- Sugimoto H.
- Kahlert C.
- Novitskiy S.V.
- De Jesus-Acosta A.
- Sharma P.
- Heidari P.
- Mahmood U.
- Chin L.
- Moses H.L.
- Weaver V.M.
- Maitra A.
- Allison J.P.
- LeBleu V.S.
- Kalluri R.
- Rhim A.D.
- Oberstein P.E.
- Thomas D.H.
- Mirek E.T.
- Palermo C.F.
- Sastra S.A.
- Dekleva E.N.
- Saunders T.
- Becerra C.P.
- Tattersall I.W.
- Westphalen C.B.
- Kitajewski J.
- Fernandez-Barrena M.G.
- Fernandez-Zapico M.E.
- Iacobuzio-Donahue C.
- Olive K.P.
- Stanger B.Z.
- Catenacci D.V.
- Junttila M.R.
- Karrison T.
- Bahary N.
- Horiba M.N.
- Nattam S.R.
- Marsh R.
- Wallace J.
- Kozloff M.
- Rajdev L.
- Cohen D.
- Wade J.
- Sleckman B.
- Lenz H.-J.
- Stiff
- Kumar P.
- Xu P.
- Henderson L.
- Takebe N.
- Salgia R.
- Wang X.
- Stadler W.M.
- de Sauvage F.J.
- Kindler H.L.
Results
CAPaSC Express High Levels of Integrin αvβ3 and ProAgio Induces CAPaSC Apoptosis

Targeting Integrin αvβ3 by ProAgio Inhibits Tumor Growth and Provides a Survival Benefit

- Olive K.P.
- Jacobetz M.A.
- Davidson C.J.
- Gopinathan A.
- McIntyre D.
- Honess D.
- Madhu B.
- Goldgraben M.A.
- Caldwell M.E.
- Allard D.
- Frese K.K.
- Denicola G.
- Feig C.
- Combs C.
- Winter S.P.
- Ireland-Zecchini H.
- Reichelt S.
- Howat W.J.
- Chang A.
- Dhara M.
- Wang L.
- Rückert F.
- Grützmann R.
- Pilarsky C.
- Izeradjene K.
- Hingorani S.R.
- Huang P.
- Davies S.E.
- Plunkett W.
- Egorin M.
- Hruban R.H.
- Whitebread N.
- McGovern K.
- Adams J.
- Iacobuzio-Donahue C.
- Griffiths J.
- Tuveson D.A.
- Olive K.P.
- Jacobetz M.A.
- Davidson C.J.
- Gopinathan A.
- McIntyre D.
- Honess D.
- Madhu B.
- Goldgraben M.A.
- Caldwell M.E.
- Allard D.
- Frese K.K.
- Denicola G.
- Feig C.
- Combs C.
- Winter S.P.
- Ireland-Zecchini H.
- Reichelt S.
- Howat W.J.
- Chang A.
- Dhara M.
- Wang L.
- Rückert F.
- Grützmann R.
- Pilarsky C.
- Izeradjene K.
- Hingorani S.R.
- Huang P.
- Davies S.E.
- Plunkett W.
- Egorin M.
- Hruban R.H.
- Whitebread N.
- McGovern K.
- Adams J.
- Iacobuzio-Donahue C.
- Griffiths J.
- Tuveson D.A.
- Olive K.P.
- Jacobetz M.A.
- Davidson C.J.
- Gopinathan A.
- McIntyre D.
- Honess D.
- Madhu B.
- Goldgraben M.A.
- Caldwell M.E.
- Allard D.
- Frese K.K.
- Denicola G.
- Feig C.
- Combs C.
- Winter S.P.
- Ireland-Zecchini H.
- Reichelt S.
- Howat W.J.
- Chang A.
- Dhara M.
- Wang L.
- Rückert F.
- Grützmann R.
- Pilarsky C.
- Izeradjene K.
- Hingorani S.R.
- Huang P.
- Davies S.E.
- Plunkett W.
- Egorin M.
- Hruban R.H.
- Whitebread N.
- McGovern K.
- Adams J.
- Iacobuzio-Donahue C.
- Griffiths J.
- Tuveson D.A.


Depletion of CAPaSC by ProAgio Increases Intratumoral Drug Delivery


Depletion of CAPaSC by ProAgio Enhances Gem Efficacy by Altering Gem Metabolism
- Ireland L.
- Santos A.
- Ahmed M.S.
- Rainer C.
- Nielsen S.R.
- Quaranta V.
- Weyer-Czernilofsky U.
- Engle D.D.
- Perez-Mancera P.A.
- Coupland S.E.
- Taktak A.
- Bogenrieder T.
- Tuveson D.A.
- Campbell F.
- Schmid M.C.
- Mielgo A.


Depletion of CAPaSC by ProAgio Decreases Hypoxia in PDAC Tumor
- Villanueva J.
- Vultur A.
- Lee J.T.
- Somasundaram R.
- Fukunaga-Kalabis M.
- Cipolla A.K.
- Wubbenhorst B.
- Xu X.
- Gimotty P.A.
- Kee Damien
- Santiago-Walker A.E.
- Letrero R.
- D’Andrea K.
- Pushparajan Anitha
- Hayden J.E.
- Dahlman Brown K.
- Laquerre S.
- McArthur G.A.
- Sosman J.A.
- Nathanson K.L.
- Herlyn M.

Effects of Specific Targeting of CAPaSC by ProAgio
- Ozdemir B.C.
- Pentcheva-Hoang T.
- Carstens J.L.
- Zheng X.
- Wu C.C.
- Simpson T.R.
- Laklai H.
- Sugimoto H.
- Kahlert C.
- Novitskiy S.V.
- De Jesus-Acosta A.
- Sharma P.
- Heidari P.
- Mahmood U.
- Chin L.
- Moses H.L.
- Weaver V.M.
- Maitra A.
- Allison J.P.
- LeBleu V.S.
- Kalluri R.
- Rhim A.D.
- Oberstein P.E.
- Thomas D.H.
- Mirek E.T.
- Palermo C.F.
- Sastra S.A.
- Dekleva E.N.
- Saunders T.
- Becerra C.P.
- Tattersall I.W.
- Westphalen C.B.
- Kitajewski J.
- Fernandez-Barrena M.G.
- Fernandez-Zapico M.E.
- Iacobuzio-Donahue C.
- Olive K.P.
- Stanger B.Z.
- Ozdemir B.C.
- Pentcheva-Hoang T.
- Carstens J.L.
- Zheng X.
- Wu C.C.
- Simpson T.R.
- Laklai H.
- Sugimoto H.
- Kahlert C.
- Novitskiy S.V.
- De Jesus-Acosta A.
- Sharma P.
- Heidari P.
- Mahmood U.
- Chin L.
- Moses H.L.
- Weaver V.M.
- Maitra A.
- Allison J.P.
- LeBleu V.S.
- Kalluri R.
- Rhim A.D.
- Oberstein P.E.
- Thomas D.H.
- Mirek E.T.
- Palermo C.F.
- Sastra S.A.
- Dekleva E.N.
- Saunders T.
- Becerra C.P.
- Tattersall I.W.
- Westphalen C.B.
- Kitajewski J.
- Fernandez-Barrena M.G.
- Fernandez-Zapico M.E.
- Iacobuzio-Donahue C.
- Olive K.P.
- Stanger B.Z.

Discussion
- Ozdemir B.C.
- Pentcheva-Hoang T.
- Carstens J.L.
- Zheng X.
- Wu C.C.
- Simpson T.R.
- Laklai H.
- Sugimoto H.
- Kahlert C.
- Novitskiy S.V.
- De Jesus-Acosta A.
- Sharma P.
- Heidari P.
- Mahmood U.
- Chin L.
- Moses H.L.
- Weaver V.M.
- Maitra A.
- Allison J.P.
- LeBleu V.S.
- Kalluri R.
- Rhim A.D.
- Oberstein P.E.
- Thomas D.H.
- Mirek E.T.
- Palermo C.F.
- Sastra S.A.
- Dekleva E.N.
- Saunders T.
- Becerra C.P.
- Tattersall I.W.
- Westphalen C.B.
- Kitajewski J.
- Fernandez-Barrena M.G.
- Fernandez-Zapico M.E.
- Iacobuzio-Donahue C.
- Olive K.P.
- Stanger B.Z.
- Ozdemir B.C.
- Pentcheva-Hoang T.
- Carstens J.L.
- Zheng X.
- Wu C.C.
- Simpson T.R.
- Laklai H.
- Sugimoto H.
- Kahlert C.
- Novitskiy S.V.
- De Jesus-Acosta A.
- Sharma P.
- Heidari P.
- Mahmood U.
- Chin L.
- Moses H.L.
- Weaver V.M.
- Maitra A.
- Allison J.P.
- LeBleu V.S.
- Kalluri R.
- Rhim A.D.
- Oberstein P.E.
- Thomas D.H.
- Mirek E.T.
- Palermo C.F.
- Sastra S.A.
- Dekleva E.N.
- Saunders T.
- Becerra C.P.
- Tattersall I.W.
- Westphalen C.B.
- Kitajewski J.
- Fernandez-Barrena M.G.
- Fernandez-Zapico M.E.
- Iacobuzio-Donahue C.
- Olive K.P.
- Stanger B.Z.
- Catenacci D.V.
- Junttila M.R.
- Karrison T.
- Bahary N.
- Horiba M.N.
- Nattam S.R.
- Marsh R.
- Wallace J.
- Kozloff M.
- Rajdev L.
- Cohen D.
- Wade J.
- Sleckman B.
- Lenz H.-J.
- Stiff
- Kumar P.
- Xu P.
- Henderson L.
- Takebe N.
- Salgia R.
- Wang X.
- Stadler W.M.
- de Sauvage F.J.
- Kindler H.L.
- Hessmann E.
- Patzak M.S.
- Klein L.
- Chen N.
- Kari V.
- Ramu I.
- Bapiro T.E.
- Frese K.K.
- Gopinathan A.
- Richards F.M.
- Jodrell D.I.
- Verbeke C.
- Li X.
- Heuchel R.
- Löhr J.M.
- Johnsen S.A.
- Gress T.M.
- Ellenrieder V.
- Neesse A.
- Ligorio M.
- Sil S.
- Malagon-Lopez J.
- Nieman L.T.
- Misale S.
- Di Pilato M.
- Ebright R.Y.
- Karabacak M.N.
- Kulkarni A.S.
- Liu A.
- Vincent Jordan N.
- Franses J.W.
- Philipp J.
- Kreuzer J.
- Desai N.
- Arora K.S.
- Rajurkar M.
- Horwitz E.
- Neyaz A.
- Tai E.
- Magnus N.K.C.
- Vo K.D.
- Yashaswini C.N.
- Marangoni F.
- Boukhali M.
- Fatherree J.P.
- Damon L.J.
- Xega K.
- Desai R.
- Choz M.
- Bersani F.
- Langenbucher A.
- Thapar V.
- Morris R.
- Wellner U.F.
- Schilling O.
- Lawrence M.S.
- Liss A.S.
- Rivera M.N.
- Deshpande V.
- Benes C.H.
- Maheswaran S.
- Haber D.A.
- Fernandez-Del-Castillo C.
- Ferrone C.R.
- Haas W.
- Aryee M.J.
- Ting D.T.
- Hessmann E.
- Patzak M.S.
- Klein L.
- Chen N.
- Kari V.
- Ramu I.
- Bapiro T.E.
- Frese K.K.
- Gopinathan A.
- Richards F.M.
- Jodrell D.I.
- Verbeke C.
- Li X.
- Heuchel R.
- Löhr J.M.
- Johnsen S.A.
- Gress T.M.
- Ellenrieder V.
- Neesse A.
Materials and Methods
Primary Human Pancreatic Stellate Cells and Activation
Panc1 Xenograft, GEM-KPC, and OrKPC Mice Generation and Treatments, and Patient Tissue Sample Screening
Panc1 xenograft
GEM-KPC
OrKPC
Tissue Section Staining
IHC and immunofluorescence
Mean Vascular Density and Mean Vessel/Lumen Area
Determination of dFdCTP, dFdU, and dFdC Concentrations in Tumors by High-Performance Liquid Chromatography/Mass Spectrometry
Statistical Calculations
Acknowledgments
CRediT Authorship Contributions
Supplementary Material
- Supplementary Table 1
References
- Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer.Science. 2009; 324: 1457-1461
- Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer.Br J Cancer. 2013; 108: 1-8
- Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma.Cancer Cell. 2012; 21: 418-429
- Hallmarks of cancer: the next generation.Cell. 2011; 144: 646-674
- Pancreatic stellate cells: partners in crime with pancreatic cancer cells.Cancer Res. 2008; 68: 2085-2093
- Pancreatic stellate cells and pancreatic cancer cells: an unholy alliance.Cancer Res. 2008; 68: 7707-7710
- Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.J Surg Res. 2013; 181: 225-233
- Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival.Cancer Cell. 2014; 25: 719-734
- Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma.Cancer Cell. 2014; 25: 735-747
- Pancreatic cancer: surprising role for fibrosis.Nat Rev Gastroenterol Hepatol. 2014; 11: 396
- Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer.J Clin Oncol. 2015; 33: 4284-4292
- Pancreatic cancer microenvironment, to target or not to target?.EMBO Mol Med. 2016; 8: 80-82
- Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases.Ann Rheum Dis. 2002; 61: ii96-99
- Integrin targeted therapeutics.Theranostics. 2011; 1: 154-188
- The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development.J Clin Invest. 1999; 103: 1227-1230
- Rational design of a protein that binds integrin alphavbeta3 outside the ligand binding site.Nat Commun. 2016; 7: 11675
- Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis.Hepatology. 2009; 50: 1501-1511
- Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells.J Biol Chem. 2004; 279: 23996-24006
- Molecular imaging of hepatic stellate cell activity by visualization of hepatic integrin alphavbeta3 expression with SPECT in rat.Hepatology. 2011; 54: 1020-1030
- Tumor microenvironment and progression of pancreatic cancer.Exp Oncol. 2010; 32: 128-131
- Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets.Sci Rep. 2018; 8: 9227
- Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice.Cancer Cell. 2005; 7: 469-483
- Development of an orthotopic model of invasive pancreatic cancer in an immunocompetent murine host.Clin Cancer Res. 2010; 16: 3684-3695
- Novel pancreatic cancer cell lines derived from genetically engineered mouse models of spontaneous pancreatic adenocarcinoma: applications in diagnosis and therapy.PLoS One. 2013; 8e80580
- Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure.Cancer Cell. 2014; 26: 14-15
- Response to Chauhan et al.: interstitial pressure and vascular collapse in pancreas cancer-fluids and solids, measurement and meaning.Cancer Cell. 2014; 26: 16-17
- Promising molecular mechanisms responsible for gemcitabine resistance in cancer.Genes Dis. 2015; 2: 299-306
- Role of gemcitabine in cancer therapy.Future Oncol. 2005; 1: 7-17
- Gemcitabine: metabolism, mechanisms of action, and self-potentiation.Semin Oncol. 1995; 22: 3-10
- Cellular pharmacology of gemcitabine.Ann Oncol. 2006; 17: v7-12
- Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines.Br J Cancer. 2003; 88: 1963-1970
- Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors.Cancer Res. 2016; 76: 6851-6863
- Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells.Br J Cancer. 2007; 96: 457-463
- Insulin-like growth factor 1 (IGF-1): a growth hormone.Mol Pathol. 2001; 54: 311-316
- Basic and clinical significance of IGF-I-induced signatures in cancer.BMC Med. 2010; 8: 2
- Pancreatic fibroblasts stimulate the motility of pancreatic cancer cells through IGF1/IGF1R signaling under hypoxia.PLoS One. 2016; 11e0159912
- Carcinoma-associated fibroblasts: orchestrating the composition of malignancy.Genes Dev. 2016; 30: 1002-1019
- Pancreatic cancer-associated stroma production.Am J Surg. 2007; 194: S84-S86
- Hypoxia activates the IGF-1 expression through STAT5b in human HepG2 cells.Biochem Biophys Res Commun. 2007; 358: 733-738
- Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K.Cancer Cell. 2010; 18: 683-695
- Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.Histochem Cell Biol. 2017; 148: 359-380
- Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer.Cell. 2019; 178: 160-175.e27
- Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer.Gut. 2018; 67: 497-507
Article Info
Publication History
Footnotes
Conflicts of interest These authors disclose the following: Zhi-Ren Liu holds shares in ProDa BioTech LLC, which licensed the rights to commercialize ProAgio; and Sun Li holds shares in Amoytop Biotech Co, Ltd, which licensed the rights to commercialize ProAgio in China. The remaining authors disclose no conflicts.
Funding This work is supported in part by research grants from the National Institutes of Health ( CA175112 , CA118113 , CA178730 , and CA217482 ) and the Georgia Cancer Coalition (Z.-R.L.); and by a Molecular Basis of Disease fellowship, Georgia State University (R.C.T. and M.S.).
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy