Background & Aims
Methods
Results
Conclusions
Graphical abstract

Keywords
Abbreviations used in this paper:
EGFP (enhanced green fluorescent protein), EdU (5-ethynyl-2′-deoxyuridine), EGFR (epidermal growth factor receptor), ENR (epidermal growth factor, noggin, R-spondin), ERK (extracellular signal-regulated kinase), IL (interleukin), ISC (intestinal stem cell), MAPK (mitogen-activated protein kinase), PBS (phosphate-buffered saline), RT-PCR (reverse transcriptase polymerase chain reaction), WRN (wnt3a, R-spondin, noggin)- Munoz M.
- Heimesaat M.M.
- Danker K.
- Struck D.
- Lohmann U.
- Plickert R.
- Bereswill S.
- Fischer A.
- Dunay I.R.
- Wolk K.
- Loddenkemper C.
- Krell H.W.
- Libert C.
- Lund L.R.
- Frey O.
- Holscher C.
- Iwakura Y.
- Ghilardi N.
- Ouyang W.
- Kamradt T.
- Sabat R.
- Liesenfeld O.
- Giacomin P.R.
- Moy R.H.
- Noti M.
- Osborne L.C.
- Siracusa M.C.
- Alenghat T.
- Liu B.
- McCorkell K.A.
- Troy A.E.
- Rak G.D.
- Hu Y.
- May M.J.
- Ma H.L.
- Fouser L.A.
- Sonnenberg G.F.
- Artis D.
- Hainzl E.
- Stockinger S.
- Rauch I.
- Heider S.
- Berry D.
- Lassnig C.
- Schwab C.
- Rosebrock F.
- Milinovich G.
- Schlederer M.
- Wagner M.
- Schleper C.
- Loy A.
- Urich T.
- Kenner L.
- Han X.
- Decker T.
- Strobl B.
- Muller M.
Results
Interleukin 22 Augments Size But Reduces Survival of Freshly Derived Enteroids
- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.
- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.
- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.

- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.
Interleukin 22 Effects on Size Require Claudin-2 Expression But Are Mechanistically Unrelated to Enteroid Survival

- Ahmad R.
- Chaturvedi R.
- Olivares-Villagomez D.
- Habib T.
- Asim M.
- Shivesh P.
- Polk D.B.
- Wilson K.T.
- Washington M.K.
- Van Kaer L.
- Dhawan P.
- Singh A.B.
- Dhawan P.
- Ahmad R.
- Chaturvedi R.
- Smith J.J.
- Midha R.
- Mittal M.K.
- Krishnan M.
- Chen X.
- Eschrich S.
- Yeatman T.J.
- Harris R.C.
- Washington M.K.
- Wilson K.T.
- Beauchamp R.D.
- Singh A.B.
Interleukin 22 Induces Epithelial Apoptosis In Vitro

Interleukin 22 Reduces Numbers of Lgr5+ Stem Cells In Vitro

- Haber A.L.
- Biton M.
- Rogel N.
- Herbst R.H.
- Shekhar K.
- Smillie C.
- Burgin G.
- Delorey T.M.
- Howitt M.R.
- Katz Y.
- Tirosh I.
- Beyaz S.
- Dionne D.
- Zhang M.
- Raychowdhury R.
- Garrett W.S.
- Rozenblatt-Rosen O.
- Shi H.N.
- Yilmaz O.
- Xavier R.J.
- Regev A.
- Haber A.L.
- Biton M.
- Rogel N.
- Herbst R.H.
- Shekhar K.
- Smillie C.
- Burgin G.
- Delorey T.M.
- Howitt M.R.
- Katz Y.
- Tirosh I.
- Beyaz S.
- Dionne D.
- Zhang M.
- Raychowdhury R.
- Garrett W.S.
- Rozenblatt-Rosen O.
- Shi H.N.
- Yilmaz O.
- Xavier R.J.
- Regev A.
- Powell A.E.
- Wang Y.
- Li Y.
- Poulin E.J.
- Means A.L.
- Washington M.K.
- Higginbotham J.N.
- Juchheim A.
- Prasad N.
- Levy S.E.
- Guo Y.
- Shyr Y.
- Aronow B.J.
- Haigis K.M.
- Franklin J.L.
- Coffey R.J.
Interleukin 22 Reduces Lgr5+ Stem Cell Numbers and Intestinal Stem Cell Proliferative Capacity In Vivo

Interleukin 22 Stimulates Epithelial Proliferation In Vitro and In Vivo
- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.

Interleukin 22 Inhibits wnt Signaling

Exogenous wnt Is Unable to Overcome Interleukin 22–Induced Growth Suppression

Interleukin 22 Inhibits Notch Signaling and Skews Epithelial Cell Differentiation
- VanDussen K.L.
- Carulli A.J.
- Keeley T.M.
- Patel S.R.
- Puthoff B.J.
- Magness S.T.
- Tran I.T.
- Maillard I.
- Siebel C.
- Kolterud A.
- Grosse A.S.
- Gumucio D.L.
- Ernst S.A.
- Tsai Y.H.
- Dempsey P.J.
- Samuelson L.C.




Discussion
- Brand S.
- Beigel F.
- Olszak T.
- Zitzmann K.
- Eichhorst S.T.
- Otte J.M.
- Diepolder H.
- Marquardt A.
- Jagla W.
- Popp A.
- Leclair S.
- Herrmann K.
- Seiderer J.
- Ochsenkuhn T.
- Goke B.
- Auernhammer C.J.
- Dambacher J.
- Brand S.
- Beigel F.
- Olszak T.
- Zitzmann K.
- Eichhorst S.T.
- Otte J.M.
- Diepolder H.
- Marquardt A.
- Jagla W.
- Popp A.
- Leclair S.
- Herrmann K.
- Seiderer J.
- Ochsenkuhn T.
- Goke B.
- Auernhammer C.J.
- Dambacher J.
- Couturier M.
- Lamarthee B.
- Arbez J.
- Renauld J.C.
- Bossard C.
- Malard F.
- Bonnefoy F.
- Mohty M.
- Perruche S.
- Tiberghien P.
- Saas P.
- Gaugler B.
- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.
- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.
- VanDussen K.L.
- Carulli A.J.
- Keeley T.M.
- Patel S.R.
- Puthoff B.J.
- Magness S.T.
- Tran I.T.
- Maillard I.
- Siebel C.
- Kolterud A.
- Grosse A.S.
- Gumucio D.L.
- Ernst S.A.
- Tsai Y.H.
- Dempsey P.J.
- Samuelson L.C.
- Mahapatro M.
- Foersch S.
- Hefele M.
- He G.W.
- Giner-Ventura E.
- McHedlidze T.
- Kindermann M.
- Vetrano S.
- Danese S.
- Gunther C.
- Neurath M.F.
- Wirtz S.
- Becker C.
- VanDussen K.L.
- Carulli A.J.
- Keeley T.M.
- Patel S.R.
- Puthoff B.J.
- Magness S.T.
- Tran I.T.
- Maillard I.
- Siebel C.
- Kolterud A.
- Grosse A.S.
- Gumucio D.L.
- Ernst S.A.
- Tsai Y.H.
- Dempsey P.J.
- Samuelson L.C.
Materials and Methods
Mice
Stem Cell (Enteroid) Culture
Interleukin 22 Treatment
- Lindemans C.A.
- Calafiore M.
- Mertelsmann A.M.
- O'Connor M.H.
- Dudakov J.A.
- Jenq R.R.
- Velardi E.
- Young L.F.
- Smith O.M.
- Lawrence G.
- Ivanov J.A.
- Fu Y.Y.
- Takashima S.
- Hua G.
- Martin M.L.
- O'Rourke K.P.
- Lo Y.H.
- Mokry M.
- Romera-Hernandez M.
- Cupedo T.
- Dow L.E.
- Nieuwenhuis E.E.
- Shroyer N.F.
- Liu C.
- Kolesnick R.
- van den Brink M.R.
- Hanash A.M.
Cell and RNA Isolation for Quantitative Reverse Transcriptase Polymerase Chain Reaction
Gene | Forward primer (5′–3′) | Reverse primer (5′–3′) |
---|---|---|
Alpi | GGCCATCTAGGACCGGAGA | TGTCCACGTTGTATGTCTTGG |
Apoa4 | CAACAGGCTGAAGGCTACGAT | CGATTTTTGCGGAGACCTTGG |
Ascl2 | CTACTCGTCGGAGGAAAG | ACTAGACAGCATGGGTAAG |
Atoh1 | GAGTGGGCTGAGGTAAAAGAGT | GGTCGGTGCTATCCAGGAG |
Axin2 | GGACTGGGGAGCCTAAAGGT | AAGGAGGGACTCCATCTACGC |
Bmi1 | ATCCCCACTTAATGTGTGTCCT | CTTGCTGGTCTCCAAGTAACG |
Cd3 | ATGCGGTGGAACACTTTCTGG | GCACGTCAACTCTACACTGGT |
Cd44 | CACCATTGCCTCAACTGTGC | TTGTGGGCTCCTGAGTCTGA |
ChgA | CCAAGGTGATGAAGTGCGTC | GGTGTCGCAGGATAGAGAGGA |
ChgB | GCTCAGCTCCAGTGGATAACA | CAGGGGTGATCGTTGGAACAC |
Cldn2 | GGCTGTTAGGCACATCCAT | TGGCACCAACATAGGAACTC |
Cmyc | TTCATCTGCGATCCTGACGAC | CACTGAGGGGTCAATGCACTC |
Dkk1 | TGCATGAGGCACGCTATGTG | GCGGCGTTGTGGTCATTAC |
Dkk2 | ACCCGCTGCAATAATGGAATC | ATGGTTGCGATCTCTATGCCG |
Dll1 | GCAGGACCTTCTTTCGCGTAT | AAGGGGAATCGGATGGGGTT |
Dll4 | TTCCAGGCAACCTTCTCCGA | ACTGCCGCTATTCTTGTCCC |
F4/80 | TGACTCACCTTGTGGTCCTAA | CTTCCCAGAATCCAGTCTTTCC |
Fabp1 | ATGAACTTCTCCGGCAAGTACC | CTGACACCCCCTTGATGTCC |
Fzd7 | CGGGGCCTCAAGGAGAGAA | GTCCCCTAAACCGAGCCAG |
Gapdh | AGGTCGGTGTGAACGGATTTG | GGGGTCGTTGATGGCAACA |
Hes1 | TCAACACGACACCGGACAAAC | ATGCCGGGAGCTATCTTTCTT |
Hopx | ACCACGCTGTGCCTCATCGC | TTCTGACCGCCGCCACTCTG |
Jagged1 | CCTCGGGTCAGTTTGAGCTG | CCTTGAGGCACACTTTGAAGTA |
Ki67 | ATCATTGACCGCTCCTTTAGGT | GCTCGCCTTGATGGTTCCT |
Lgr5 | CCTACTCGAAGACTTACCCAGT | GCATTGGGGTGAATGATAGCA |
Lrig1 | TTGAGGACTTGACGAATCTGC | CTTGTTGTGCTGCAAAAAGAGAG |
Lrp5 | AAGGGTGCTGTGTACTGGAC | AGAAGAGAACCTTACGGGACG |
Lrp6 | TTGTTGCTTTATGCAAACAGACG | GTTCGTTTAATGGCTTCTTCGC |
Lyz1 | GGAATGGATGGCTACCGTGG | CATGCCACCCATGCTCGAAT |
Mmp7 | CTGCCACTGTCCCAGGAAG | GGGAGAGTTTTCCAGTCATGG |
Mpo | AGTTGTGCTGAGCTGTATGGA | CGGCTGCTTGAAGTAAAACAGG |
Muc2 | ATGCCCACCTCCTCAAAGAC | GTAGTTTCCGTTGGAACAGTGAA |
Neurog 3 | CCAAGAGCGAGTTGGCACT | CGGGCCATAGAAGCTGTGG |
Notch1 | GATGGCCTCAATGGGTACAAG | TCGTTGTTGTTGATGTCACAGT |
Olfm4 | GCCACTTTCCAATTTCAC | GAGCCTCTTCTCATACAC |
Pcna | TTTGAGGCACGCCTGATCC | GGAGACGTGAGACGAGTCCAT |
Prom1 | CTCCCATCAGTGGATAGAGAACT | ATACCCCCTTTTGACGAGGCT |
Prss32 | GCCTGCCATCCTATTTACCTTC | AGTCCAAGTCAATGCTCCTCC |
Reg3b | ACTCCCTGAAGAATATACCCTCC | CGCTATTGAGCACAGATACGAG |
Reg3g | ATGCTTCCCCGTATAACCATCA | GGCCATATCTGCATCATACCAG |
Rnf43 | TCCGAAAGATCAGCAGAACAGA | GGACTGCATTAGCTTCCCTTC |
Slc5a | ATGCGGCTGACATCTCAGTC | ACCAAGGCGTTCCATTCAAAG |
Sox9 | GAGCCGGATCTGAAGAGGGA | GCTTGACGTGTGGCTTGTTC |
Tert | TCTACCGCACTTTGGTTGCC | CAGCACGTTTCTCTCGTTGC |
Vil1 | TCAAAGGCTCTCTCAACATCAC | AGCAGTCACCATCGAAGAAGC |
Wif1 | GATCCAACTGTCAATGTCCCTT | ACACGGGAAACCAACTTGAAC |
Wnt3 | TGGAACTGTACCACCATAGATGAC | ACACCAGCCGAGGCGATG |
Zpf652 | GGAGCTGGTTGAACCCTGTG | AGGGCTTCCAGACTCCCTTTT |
Enteroid Imaging and Staining
Flow Cytometry
Histology, Immunohistochemistry, and Immunofluorescence Staining
In Vivo Interleukin 22 Administration
Statistical Analysis
References
- Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.Nature. 2011; 469: 415-418
- Stem cell signaling: an integral program for tissue renewal and regeneration—Wnt signaling and stem cell control.Science. 2014; 346: 1248012
- Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury.Science. 2012; 338: 108-113
- Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine.Arthritis Rheum. 2005; 52: 1037-1046
- IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while Il-17 and IFN-gamma are not.J Mol Med (Berl). 2009; 87: 523-536
- Endogenous IL-22 plays a dual role in arthritis: regulation of established arthritis via ifn-gamma responses.PLoS One. 2014; 9: e93279
- Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis.Ann Rheum Dis. 2011; 70: 1453-1457
- Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice.J Clin Invest. 2012; 122: 2252-2256
- Interleukin (IL)-23 mediates toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17.J Exp Med. 2009; 206: 3047-3059
- Memory/effector (CD45RB(lo)) CD4 T cells are controlled directly by il-10 and cause IL-22-dependent intestinal pathology.J Exp Med. 2011; 208: 1027-1040
- Interleukin-22 aggravates murine acute graft-versus-host disease by expanding effector T cell and reducing regulatory T cell.J Interferon Cytokine Res. 2014; 34: 707-715
- Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment.Hepatology. 2014; 59: 1331-1342
- IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance.Cell Host Microbe. 2017; 21: 671-681 e4
- Interleukin-22 in the diagnosis of active chronic graft-versus-host disease in paediatric patients.Br J Haematol. 2015; 168: 142-145
- Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease.Immunity. 2008; 29: 947-957
- IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis.J Clin Invest. 2008; 118: 534-544
- Epithelial-intrinsic IKKalpha expression regulates group 3 innate lymphoid cell responses and antibacterial immunity.J Exp Med. 2015; 212: 1513-1528
- Intestinal epithelial cell tyrosine kinase 2 transduces IL-22 signals to protect from acute colitis.J Immunol. 2015; 195: 5011-5024
- Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.J Exp Med. 2015; 212: 1783-1791
- Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.Nature. 2015; 528: 560-564
- IL22 inhibits epithelial stem cell expansion in an ileal organoid model.Cell Mol Gastroenterol Hepatol. 2019; 7: 1-17
- Claudin-2, a component of the tight junction, forms a paracellular water channel.J Cell Sci. 2010; 123: 1913-1921
- Claudin-2-dependent paracellular channels are dynamically gated.Elife. 2015; 4: e09906
- Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site.J Gen Physiol. 2009; 133: 111-127
- Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis.Mucosal Immunol. 2014; 7: 1340-1353
- Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation.Oncogene. 2011; 30: 3234-3247
- Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts.Cell Stem Cell. 2015; 16: 158-170
- A single-cell survey of the small intestinal epithelium.Nature. 2017; 551: 333-339
- The intestinal crypt, a prototype stem cell compartment.Cell. 2013; 154: 274-284
- Sox9 maintains reserve stem cells and preserves radioresistance in mouse small intestine.Gastroenterology. 2015; 149: 1553-1563 e10
- Lrig1 controls intestinal stem-cell homeostasis by negative regulation of erbb signalling.Nat Cell Biol. 2012; 14: 401-408
- The pan-erbb negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor.Cell. 2012; 149: 146-158
- Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications.Science. 2013; 340: 1190-1194
- In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture.Nat Protoc. 2013; 8: 2471-2482
- Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny.Nat Methods. 2014; 11: 106-112
- Opposing activities of notch and wnt signaling regulate intestinal stem cells and gut homeostasis.Cell Rep. 2015; 11: 33-42
- Notch regulation of gastrointestinal stem cells.J Physiol. 2016; 594: 4791-4803
- Notch in the intestine: regulation of homeostasis and pathogenesis.Annu Rev Physiol. 2013; 75: 263-288
- Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells.Development. 2012; 139: 488-497
- Dll1+ secretory progenitor cells revert to stem cells upon crypt damage.Nat Cell Biol. 2012; 14: 1099-1104
- Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells.Cell Stem Cell. 2017; 20: 177-190 e4
- IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration.Am J Physiol Gastrointest Liver Physiol. 2006; 290: G827-G838
- Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts.Gastroenterology. 2005; 129: 969-984
- IL-22 deficiency in donor T cells attenuates murine acute graft-versus-host disease mortality while sparing the graft-versus-leukemia effect.Leukemia. 2013; 27: 1527-1537
- Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine.Gastroenterology. 2009; 136: 2187-2194 e1
- Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells.Cell. 2010; 143: 134-144
- Dll1- and Dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.Gastroenterology. 2011; 140: 1230-1240 e1–e7
- Intestinal label-retaining cells are secretory precursors expressing Lgr5.Nature. 2013; 495: 65-69
- IL-22 increases permeability of intestinal epithelial tight junctions by enhancing claudin-2 expression.J Immunol. 2017; 199: 3316-3325
- Claudin-2-mediated cation and water transport share a common pore.Acta Physiol (Oxf). 2017; 219: 521-536
- Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells.J Cell Sci. 2002; 115: 4969-4976
- Genetic control of single lumen formation in the zebrafish gut.Nat Cell Biol. 2007; 9: 954-960
- Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection.Cell Rep. 2016; 15: 1743-1756
- Functional intestinal stem cells after paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1).Proc Natl Acad Sci U S A. 2012; 109: 8965-8970
- Identification of stem cells in small intestine and colon by marker gene Lgr5.Nature. 2007; 449: 1003-1007
- Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine.Gastroenterology. 2011; 140: 913-923
- Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265
- Separation of intact intestinal epithelium from mesenchyme.Biotechniques. 2013; 55: 42-44
Article info
Publication history
Footnotes
Author contributions J.Z., J.R.T., and W.H. designed experiments, analyzed data, and prepared this manuscript. J.P., X.Z., K.C., and M.T. analyzed data and discussed the results. J.Z., H.L., Q.L., Z.J., P.T., W.K., N.D., J.W., S.X., Y.W., M.A.O., J.R.T., and W.H. performed experiments. A.T. and S.T. provided critical reagents. All authors reviewed and approved the submitted manuscript.
Conflicts of interest The authors disclose no conflicts.
Funding Funded by National Natural Science Foundation of China (81470804 and 31401229 to W.H.; 81200620 to J.Z.; 81570125 to J.P.), the Natural Science Foundation of Jiangsu Province (BK20140319 to W.H.), The Research Innovation Program for College Graduates of Jiangsu Province (KYLX16-0116 to H.L.; KYCX17-2033 to Z.J.), Advanced Research Projects of Soochow University (SDY2015B06 to J.Z.), Crohn’s & Colitis Foundation Research Fellowship Award (310801 to W.H.), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK061931 and R01DK068271 to J.R.T. and F30DK103511 to M.A.O.), and the Harvard Digestive Disease Center (P30DK034854). This work was also supported by International Joint Research Center for Genomic Resources (2017B01012).
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Epithelial Traffic Control: IL22 Gives TA Cells the Green LightCellular and Molecular Gastroenterology and HepatologyVol. 7Issue 2
- PreviewThe intestinal epithelial barrier is instrumental in the physical separation of gut microbiota from underlying innate and adaptive immune cells and stromal cells.1 This “barrier” is anything but static, however, with intestinal stem cells (ISCs) tightly controlling regeneration of the epithelial lining along the crypt–villus axis in a coordinated balance between ISC self-renewal and differentiation into transit-amplifying (TA) cells.2 Although numerous, well-defined growth factor pathways are known to regulate ISC and TA cell expansion dynamics in the steady state, far less is understood about how specific cytokines expressed during tissue injury and inflammation influence this intricate process.
- Full-Text
- Preview