Background & Aims
Methods
Results
Conclusions
Graphical abstract

Keywords
Abbreviations used in this paper:
BDL (bile duct ligation), CCL4 (carbon tetrachloride), ChIP (chromatin immunoprecipitation), CTGF (connective tissue growth factor), DKK1 (Dickkopf-1), ECM (extracellular matrix), EZH2 (enhancer of zeste homologue 2), FBS (fetal bovine serum), FDR (false discovery rate), H3K27me3 (trimethylation of histone 3 at lysine 27), HCC (hepatocellular carcinoma), HMT (histone methyltransferase), HSC (hepatic stellate cell), IP (intraperitoneally), IPA (Ingenuity Pathway Analysis), logFC (logarithmic fold change), mRNA (messenger RNA), PCR (polymerase chain reaction), PDGF (platelet-derived growth factor), siRNA (small interfering RNA), α-SMA (α-smooth muscle actin), TGF-β (transforming growth factor β), VEGFA (vascular endothelial growth factor A), WT (wild type)Results
TGF-β Shares Overlapping Targets With PDGF but Has a More Dominant Role in HSC Activation

ADM | DKK1 | HES4 | NFATC2 | RAP1GAP2 |
AMOTL2 | E2F7 | HEYL | NIPAL4 | RASD1 |
ANGPTL4 | EFR3B | HOXB-AS2 | NKX3-1 | RHBDL3 |
ANKRD33B | EGR3 | IFIT2 | NPTX1 | RHOB |
ARAP2 | ELFN1 | IFNE | NR4A1 | RPL39P5 |
AXIN2 | ENC1 | IL6 | NR4A3 | RRAD |
BBC3 | EPHB3 | IL11 | OLFM2 | RUNX1T1 |
BMF | ESM1 | INHBA | PCDH1 | SCG2 |
BMP2 | FAM131B | KCNG1 | PDGFA | SEMA7A |
BMP4 | FAM196A | KCNN4 | PDGFB | SPDL1 |
C3orf52 | FAM196B | KIAA1644 | PGBD5 | SPHK1 |
C8orf4 | FBXO32 | KIT | PITPNM3 | SPRY2 |
CACNA1G | FGF18 | KREMEN2 | PKP1 | STC1 |
CARMIL2 | FGFR3 | LIF | PLAUR | TAGLN3 |
CCNG2 | FOSB | LOC401472 | PLCH2 | TCF7 |
CEBPD | GAL | LOC541472 | PLEKHF1 | TFPI2 |
CECR6 | GAS1 | LOC105376292 | PNP | TNFAIP8L3 |
CLDN4 | GCSAM | LRRC8C | PNRC1 | TRAF1 |
CNKSR3 | GEM | LURAP1L | PODXL | WNT7B |
CREBRF | GFPT2 | MGC20647 | PTCH1 | ZNF365 |
CTTNBP2 | GPR3 | MIR17HG | PTGS2 | |
CXCL8 | GREM2 | MMP1 | PTHLH | |
DDIT4 | HBEGF | NFATC1 | PTPRE |
EZH2 Is Up-Regulated in HSCs Treated With TGF-β but Not With PDGF-BB

EZH2 Inhibition Attenuates TGF-β–Dependent HSC Activation In Vitro
- Béguelin W.
- Popovic R.
- Teater M.
- Jiang Y.
- Bunting K.L.
- Rosen M.
- Shen H.
- Yang S.N.
- Wang L.
- Ezponda T.
- Martinez-Garcia E.
- Zhang H.
- Zheng Y.
- Verma S.K.
- McCabe M.T.
- Ott H.M.
- Van Aller G.S.
- Kruger R.G.
- Liu Y.
- McHugh C.F.
- Scott D.W.
- Chung Y.R.
- Kelleher N.
- Shaknovich R.
- Creasy C.L.
- Gascoyne R.D.
- Wong K.K.
- Cerchietti L.
- Levine R.L.
- Abdel-Wahab O.
- Licht J.D.
- Elemento O.
- Melnick A.M.
- Zingg D.
- Debbache J.
- Schaefer S.M.
- Tuncer E.
- Frommel S.C.
- Cheng P.
- Arenas-Ramirez N.
- Haeusel J.
- Zhang Y.
- Bonalli M.
- McCabe M.T.
- Creasy C.L.
- Levesque M.P.
- Boyman O.
- Santoro R.
- Shakhova O.
- Dummer R.
- Sommer L.

EZH2 Overexpression Promotes Production of ECM Proteins In Vitro

EZH2 Inhibition Attenuates Liver Fibrosis in Mice Treated With CCL4 and BDL

Discussion
- Italiano A.
- Soria J.C.
- Toulmonde M.
- Michot J.M.
- Lucchesi C.
- Varga A.
- Coindre J.M.
- Blakemore S.J.
- Clawson A.
- Suttle B.
- McDonald A.A.
- Woodruff M.
- Ribich S.
- Hedrick E.
- Keilhack H.
- Thomson B.
- Owa T.
- Copeland R.A.
- Ho P.T.C.
- Ribrag V.
- Agulnik M.
- Tannir N.M.
- Pressey J.G.
- Gounder M.M.
- Cote G.M.
- Roche M.
- Doleman S.
- Blakemore S.J.
- Clawson A.
- Daigle S.
- Tang J.
- Ho P.T.C.
- Demetri J.D.
- Watson C.J.
- Collier P.
- Tea I.
- Neary R.
- Watson J.A.
- Robinson C.
- Phelan D.
- Ledwidge M.T.
- McDonald K.M.
- McCann A.
- Sharaf O.
- Baugh J.A.
- Zeybel M.
- Luli S.
- Sabater L.
- Hardy T.
- Oakley F.
- Leslie J.
- Page A.
- Moran Salvador E.
- Sharkey V.
- Tsukamoto H.
- Chu D.C.K.
- Singh U.S.
- Ponzoni M.
- Perri P.
- Di Paolo D.
- Mendivil E.J.
- Mann J.
- Mann D.A.
- Gunawan M.
- Venkatesan N.
- Loh J.T.
- Wong J.F.
- Berger H.
- Neo W.H.
- Li L.Y.
- La Win M.K.
- Yau Y.H.
- Guo T.
- See P.C.
- Yamazaki S.
- Chin K.C.
- Gingras A.R.
- Shochat S.G.
- Ng L.G.
- Sze S.K.
- Ginhoux F.
- Su I.H.
- Vasanthakumar A.
- Xu D.
- Lun A.T.
- Kueh A.J.
- van Gisbergen K.P.
- Iannarella N.
- Li X.
- Yu L.
- Wang D.
- Williams B.R.
- Lee S.C.
- Majewski I.J.
- Godfrey D.I.
- Smyth G.K.
- Alexander W.S.
- Herold M.J.
- Kallies A.
- Nutt S.L.
- Allan R.S.
Materials and Methods
Cell culture
RNA sequencing
ChIP sequencing
Quantitative reverse-transcription polymerase chain reaction
h EZH2 | Forward | 5′-CCCTGACCTCTGTCTTACTTGTGGA-3′ |
Reverse | 3′-ACGTCAGATGGTGCCAGAAATA-3′ | |
h Fibronectin | Forward | 5’-GATAAATCAACAGTGGGAGC-3’ |
Reverse | 5’-CCCAGATCATGGAGTCTTTA-3’ | |
h α-SMA | Forward | 5’-GACAGCTACGTGGGTGACGAA-3’ |
Reverse | 5’-TTTTCCATGTCGTCCCAGTTG-3’ | |
h Collagen 1α1 | Forward | 5’-CCCGGGTTTCAGAGACAACTTC-3’ |
Reverse | 5’-TCCACATGCTTTATTCCAGACATC-3’ | |
h GAPDH | Forward | 5’-CCAGGGCTGCTTTTAACTCT-3’ |
Reverse | 5’-GGACTCCACGACGTACTCA-3’ | |
m β-actin | Forward | 5’-AGAGGGAAATCGTGCGTGAC-3’ |
Reverse | 5’-CAATAGTGATGACCTGGCCGT-3’ | |
m Collagen 1α1 | Forward | 5’-GAGCGGAGAGTACTGGATCG-3’ |
Reverse | 5’-GCTTCTTTTCCTTGGGGTTC-3’ | |
m EZH2 | Forward | 5’-TCCCGTTAAAGACCCTGAATG-3’ |
Reverse | 5’-TGAAAGTGCCATCCTGATCC-3’ | |
m Fibronectin | Forward | 5’-GTGGCTGCCTTCAACTTCTC-3’ |
Reverse | 5’-GTGGGTTGCAAACCTTCAAT-3’ | |
m α-SMA | Forward | 5’-AAACAGGAATACGACGAAG-3’ |
Reverse | 5’-CAGGAATGATTTGGAAAGGA-3’ | |
m EZH2 | Forward | 5’-TCCCGTTAAAGACCCTGAATG-3’ |
Reverse | 5’-TGAAAGTGCCATCCTGATCC-3’ |
Western blot analysis
Primary antibody | Company and product number |
---|---|
EZH2 | Cell Signaling 5246 |
H3K27me3 | Abcam Ab6147 |
GAPDH | Invitrogen AM4300 |
Fibronectin | Santa Cruz sc-9068 |
HSC 70 | Santa Cruz sc-7298 |
Collagen 1 | Southern Biotech (Birmingham, AL) 1310-01 |
α-SMA | Abcam ab5694 |
Histone 3 | Abcam ab1791 |
Cell immunofluorescence
RNA interference knockdown
Adenoviral transfection
Liver Fibrosis In Vivo Models
CCL4 and GSK-503 treatment
BDL model
Hydroxyproline assay
Statistical Analysis
Acknowledgments
References
- Pathogenesis of liver fibrosis.Annu Rev Pathol. 2011; 6: 425-456
- Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury.Am J Physiol Liver Physiol. 2013; 304: G605-G614
- Mechanisms of hepatic stellate cell activation.Nat Rev Gastroenterol Hepatol. 2017; 14: 397-411
- Hepatic stellate cells: protean, multifunctional and enigmatic cells of the liver.Physiol Rev. 2008; 88: 125-172
- Platelet-derived growth factor receptor α contributes to human hepatic stellate cell proliferation and migration.Am J Pathol. 2017; 187: 2273-2287
- An operational definition of epigenetics.Genes Dev. 2009; 23: 781-783
- Epigenetics and liver fibrosis.Cell Mol Gastroenterol Hepatol. 2017; 4: 125-134
- Role of histone H3 lysine 27 methylation in polycomb-group silencing.Science. 2002; 298: 1039-1043
- Targeting EZH2 in cancer therapy.Curr Opin Oncol. 2017; 29: 375-381
- Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis.Hepatology. 2012; 56: 622-631
- MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis.Gastroenterology. 2010; 138: 705-714
- EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis.Physiol Rep. 2016; 4: e12915
- Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression.J Am Soc Nephrol. 2016; 27: 2092-2108
- Transcriptional dysregulation of inflammatory gene networks in alcoholic hepatitis is associated with genomewide reconfiguration of epigenetic states.Gastroenterology. 2018; 154: s1109
- EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation.Cancer Cell. 2013; 23: 677-692
- The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors.Nat Commun. 2015; 6: 6051
- Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study.Lancet Oncol. 2018; 19: 649-659
- Clinical and biological relevance of enhancer of zeste homolog 2 in triple-negative breast cancer.Hum Pathol. 2012; 43: 1638-1644
- Initial testing (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the pediatric preclinical testing program.Pediatr Blood Cancer. 2017; 64: e26218
- A phase II, multicenter study of the EZH2 inhibitor tazemetostat in adult subjects with INI1-negative tumors or relapsed/refractory synovial sarcoma.J Clin Oncol. 2016; 34: s15
- Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer.Genome Res. 2011; 21: 74-82
- Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype.Hum Mol Genet. 2014; 23: 2176-2188
- MiR-17-92 cluster regulates cell proliferation and collagen synthesis by targeting TGFB pathway in mouse palatal mesenchymal cells.J Cell Biochem. 2012; 113: 1235-1244
- Procollagen lysyl hydroxylase 2 expression is regulated by an alternative downstream transforming growth factor β-1 activation mechanism.J Biol Chem. 2015; 290: 28465-28476
- MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis.Biochim Biophys Acta. 2015; 1849: 1219-1228
- Epigenetics in liver disease: from biology to therapeutics.Gut. 2016; 65: 1895-1905
- The role of epigenomics in personalized medicine.Expert Rev Precis Med Drug Dev. 2017; 2: 33-45
- A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin A.Mol Ther. 2017; 25: 218-231
- EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.J Cell Mol Med. 2017; 21: 2317-2328
- Beta-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/beta-catenin signaling inhibits hepatic stellate cell activation.Mol Med Rep. 2014; 9: 2145-2151
- Carnosol-mediated sirtuin 1 activation inhibits enhancer of zeste homolog 2 to attenuate liver fibrosis.Pharmacol Res. 2018; 128: 327-337
- E-cadherin antagonizes transforming growth factor β1 gene induction in hepatic stellate cells by inhibiting RhoA-dependent Smad3 phosphorylation.Hepatology. 2010; 52: 2053-2064
- Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway.Cell Death Dis. 2018; 9: 590
- The functional and mechanistic relatedness of EZH2 and menin in hepatocellular carcinoma.J Hepatol. 2014; 61: 832-839
- The methyltransferase EZH2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin.Nat Immunol. 2015; 16: 505-516
- Polycomb group protein EZH2 controls actin polymerization and cell signaling.Cell. 2005; 121: 425-436
- A non-canonical function of EZH2 preserves immune homeostasis.EMBO Rep. 2017; 18: 619-631
- EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma.Blood. 2016; 128: 948-958
- Non-canonical EZH2 transcriptionally activates RelB in triple negative breast cancer.PLoS One. 2016; 11: e0165005
- EZH2, an epigenetic driver of prostate cancer.Protein Cell. 2013; 4: 331-341
- EZH2 methyltransferase and H3K27 methylation in breast cancer.Int J Biol Sci. 2011; 8: 59-65
- Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target.Oncotarget. 2015; 8: 37974-37990
- Proteomic analysis of EZH2 downstream target proteins in hepatocellular carcinoma.Proteomics. 2007; 7: 3097-3104
- EZH2 promotes hepatocellular carcinoma progression through modulating miR-22/galectin-9 axis.J Exp Clin Cancer Res. 2018; 37: 3
- MicroRNA-137 has a suppressive role in liver cancer via targeting EZH2.Mol Med Rep. 2017; 16: 9494-9502
- Overexpression of the long non-coding RNA SPRY4-IT1 promotes tumor cell proliferation and invasion by activating EZH2 in hepatocellular carcinoma.Biomed Pharmacother. 2017; 85: 348-354
- A CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients.J Hepatol. 2015; 62: 1100-1111
- Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma.Br J Cancer. 2005; 92: 1754-1758
- Inhibition of enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells.Proc Natl Acad Sci U S A. 2018; 115: E3509-E3518
- Heatmapper: web-enabled heat mapping for all.Nucleic Acids Res. 2016; 44: W147-W153
- The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice.Hepatology. 2017; 65: 983-998
- Functional characterization of EZH2β reveals the increased complexity of EZH2 isoforms involved in the regulation of mammalian gene expression.Epigenetics Chromatin. 2013; 6: 3
- Animals models of gastrointestinal and liver diseases. Animal models of alcohol-induced liver disease: pathophysiology, translational relevance, and challenges.Am J Physiol Gastrointest Liver Physiol. 2014; 306: G819-G823
- Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis.J Vis Exp. 2015; 96
Article info
Publication history
Footnotes
Author contributions R. Martin-Mateos was responsible for the study concept and design, acquisition of data, analysis and interpretation of data, and drafting the manuscript; T. M. De Assuncao acquired data, analyzed and interpreted data, and provided material support; N. Jalan-Sakrikar acquired data, and analyzed and interpreted data; U. Yaqoob acquired data and provided material support; A. J. Mathison acquired data and provided material support; T. Greuter analyzed and interpreted data; S. Cao was responsible for the study concept and design, and analysis and interpretation of the data; J. P. Arab was responsible for the study concept and design, acquisition of data, and analysis and interpretation of the data; V. Verma acquired data, and analyzed and interpreted data; R. C. Huebert was responsible for the study concept and design, analysis and interpretation of the data, and critical revision of the manuscript for important intellectual content; G. Lomberk was responsible for the study concept and design, and analysis and interpretation of data; P. Mathurin acquired data, and analyzed and interpreted the data; R. Urrutia was responsible for the study concept and design, analysis and interpretation of the data, and critical revision of the manuscript for important intellectual content; and Vijay H. Shah was responsible for the study concept and design, analysis and interpretation of the data, obtained funding, critical revision of the manuscript for important intellectual content, and study supervision.
Conflicts of interest The authors disclose no conflicts.
Funding Supported by National Institutes of Health R01 DK59615 and R01 AA21171 (V.H.S.), and the Spanish Association for the Study of the Liver (grant Juan Rodés 2016) (R.M.M.).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Identifying New Epigenetic Drivers of Liver FibrosisCellular and Molecular Gastroenterology and HepatologyVol. 7Issue 1
- PreviewLiver fibrosis is the wound healing response to repeated injury that occurs in most chronic liver diseases and results in excessive accumulation of extracellular matrix. The development of advanced fibrosis is a key determinant of liver-associated morbidity and mortality.1 Patients with advanced fibrosis (Metavir degree F3/F4) are prone to develop liver decompensations and hepatocellular carcinoma and are at risk of liver-related morbidity and mortality. Currently, the only effective therapy to slow the progression or even regress liver fibrosis is the removal of the cause of liver disease (ie, weight loss in nonalcoholic steatohepatitis, elimination of viral hepatitis, and so forth).
- Full-Text
- Preview