Background & Aims
Methods
Results
Conclusions
Graphical abstract

Keywords
Abbreviations used in this paper:
APC (allophycocyanin), Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), cDNA (complementary DNA), Egf (epidermal growth factor), FACS (fluorescence-activated cell sorting), 4-OHT (4-hydroxytamoxifen), GFP (green fluorescent protein), HBSS (Hank’s balanced salt solution), ISC (intestinal stem cell), Lyz (lysozyme), Lgr5 (leucine-rich repeat-containing G-protein–coupled receptor 5), mAb (monoclonal antibody), mRNA (messenger RNA), OHSU (Oregon Health and Science University), PBS (phosphate-buffered saline), PE (Phycoerythrin), qRT-PCR (quantitative reverse-transcription polymerase chain reaction), Rspo1 (R-spondin1), TdT (tdTomato), 3D (3-dimensional), Wnt (wingless-type MMTV (mouse mammary tumor virus) integration site)- Powell A.E.
- Wang Y.
- Li Y.
- Poulin E.J.
- Means A.L.
- Washington M.K.
- Higginbotham J.N.
- Juchheim A.
- Prasad N.
- Levy S.E.
- Guo Y.
- Shyr Y.
- Aronow B.J.
- Haigis K.M.
- Franklin J.L.
- Coffey R.J.
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.
Materials and Methods
Mouse Strains and Statistics
mAb Generation and Characterization
- Magness S.T.
- Puthoff B.J.
- Crissey M.A.
- Dunn J.
- Henning S.J.
- Houchen C.
- Kaddis J.S.
- Kuo C.J.
- Li L.
- Lynch J.
- Martin M.G.
- May R.
- Niland J.C.
- Olack B.
- Qian D.
- Stelzner M.
- Swain J.R.
- Wang F.
- Wang J.
- Wang X.
- Yan K.
- Yu J.
- Wong M.H.
Antibody | Company | Catalog no. | Dilution |
---|---|---|---|
Chromogranin A | Abcam (Cambridge, MA) | ab15160 | 500 |
GFP | Aves Laboratories (Tigard, OR) | GFP-1020 | 1000 |
GFP | Life Technologies | A11122 | 500 |
E-cadherin | Sigma | U3254 | 500 |
Lysozyme | Dako (Carpinteria, CA) | A0099 | 500 |
mAb B6A6 | Wong Laboratory (Portland, OR) | N/A | Undiluted |
mAb E5D10 | Wong Laboratory | N/A | Undiluted |
mAb F5C12 | Wong Laboratory | N/A | Undiluted |
Anti-chicken IgY Alexa-488 | Jackson ImmunoResearch | 703-546-155 | 500 |
Anti-mouse EpCAM-APC | Biolegend (San Diego, CA) | 118214 | 500 |
Anti-rabbit IgG-Cy3 | Jackson ImmunoResearch | 711-166-152 | 500 |
Anti-rat IgG-Cy3 | Jackson ImmunoResearch | 712-165-153 | 500 |
Anti-rat IgM-specific APC | Jackson ImmunoResearch | 112-136-075 | 500 |
CD31-PE-Cy7 | Biolegend | 102418 | 200 |
CD45-PE-Cy7 | Biolegend | 103114 | 200 |
Anti-rat IgM-specific PE | Jackson ImmunoResearch | 112-116-075 | 200 |
Anti-rat IgM-specific APC | Jackson ImmunoResearch | 112-136-075 | 200 |
Anti-rat IgG Fcγ-specific APC | Jackson ImmunoResearch | 112-136-071 | 200 |
Anti-rat IgG Alexa-488 | Jackson ImmunoResearch | 112-546-072 | 200 |
Anti-rat IgG PE | Jackson ImmunoResearch | 712-116-153 | 200 |
Anti-rat IgG APC | Jackson ImmunoResearch | 712-136-153 | 200 |
Tissue Preparation and Immunofluorescent Analyses
Isolation of Mouse Intestinal Epithelial Cells and Flow Cytometry/FACS Analyses
- Magness S.T.
- Puthoff B.J.
- Crissey M.A.
- Dunn J.
- Henning S.J.
- Houchen C.
- Kaddis J.S.
- Kuo C.J.
- Li L.
- Lynch J.
- Martin M.G.
- May R.
- Niland J.C.
- Olack B.
- Qian D.
- Stelzner M.
- Swain J.R.
- Wang F.
- Wang J.
- Wang X.
- Yan K.
- Yu J.
- Wong M.H.
Enteroid Culture

- Gracz A.D.
- Williamson I.A.
- Roche K.C.
- Johnston M.J.
- Wang F.
- Wang Y.
- Attayek P.J.
- Balowski J.
- Liu X.F.
- Laurenza R.J.
- Gaynor L.T.
- Sims C.E.
- Galanko J.A.
- Li L.
- Allbritton N.L.
- Magness S.T.
- Gracz A.D.
- Williamson I.A.
- Roche K.C.
- Johnston M.J.
- Wang F.
- Wang Y.
- Attayek P.J.
- Balowski J.
- Liu X.F.
- Laurenza R.J.
- Gaynor L.T.
- Sims C.E.
- Galanko J.A.
- Li L.
- Allbritton N.L.
- Magness S.T.
qRT-PCR Analysis
- Wang F.
- Scoville D.
- He X.C.
- Mahe M.M.
- Box A.
- Perry J.M.
- Smith N.R.
- Lei N.Y.
- Davies P.S.
- Fuller M.K.
- Haug J.S.
- McClain M.
- Gracz A.D.
- Ding S.
- Stelzner M.
- Dunn J.C.
- Magness S.T.
- Wong M.H.
- Martin M.G.
- Helmrath M.
- Li L.
Gene name | Probe ID |
---|---|
Ascl2 | mm01268891_g1 |
Bmi1 | mm03053308_g1 |
CD24 | mm00782538_sH |
CD44 | mm01277163_m1 |
ChgA | mm00514341_m1 |
ChgB | mm00483287_m1 |
CyclinD1 | mm00432359_m1 |
Fabpl | mm00444340_m1 |
Gapdh | mm99999915_g1 |
Hopx | mm00558630_m1 |
Ki67 | mm01278617_m1 |
Lgr5 | mm00438890_m1 |
Lyz1 | mm00657323_m1 |
Ngn3 | mm00437606_s1 |
mTert | mm00436931_m1 |
Muc2 | mm01276696_m1 |
Olfm4 | mm01320260_m1 |
Smoc2 | mm00491553_m1 |
Sox9 | mm00448840_m1 |
Results
Lgr5GFP and Bmi1GFP Cells Display Distinct Growth Properties in Ex Vivo 3D Cell Culture
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.
- Binnerts M.E.
- Kim K.A.
- Bright J.M.
- Patel S.M.
- Tran K.
- Zhou M.
- Leung J.M.
- Liu Y.
- Lomas 3rd, W.E.
- Dixon M.
- Hazell S.A.
- Wagle M.
- Nie W.S.
- Tomasevic N.
- Williams J.
- Zhan X.
- Levy M.D.
- Funk W.D.
- Abo A.
- de Lau W.
- Barker N.
- Low T.Y.
- Koo B.K.
- Li V.S.
- Teunissen H.
- Kujala P.
- Haegebarth A.
- Peters P.J.
- van de Wetering M.
- Stange D.E.
- van Es J.E.
- Guardavaccaro D.
- Schasfoort R.B.
- Mohri Y.
- Nishimori K.
- Mohammed S.
- Heck A.J.
- Clevers H.
Novel mAb Clone F5C12 Facilitates FACS Enrichment of Lgr5GFP ISCs
- Wang F.
- Scoville D.
- He X.C.
- Mahe M.M.
- Box A.
- Perry J.M.
- Smith N.R.
- Lei N.Y.
- Davies P.S.
- Fuller M.K.
- Haug J.S.
- McClain M.
- Gracz A.D.
- Ding S.
- Stelzner M.
- Dunn J.C.
- Magness S.T.
- Wong M.H.
- Martin M.G.
- Helmrath M.
- Li L.
- Munoz J.
- Stange D.E.
- Schepers A.G.
- van de Wetering M.
- Koo B.K.
- Itzkovitz S.
- Volckmann R.
- Kung K.S.
- Koster J.
- Radulescu S.
- Myant K.
- Versteeg R.
- Sansom O.J.
- van Es J.H.
- Barker N.
- van Oudenaarden A.
- Mohammed S.
- Heck A.J.
- Clevers H.


- Gracz A.D.
- Williamson I.A.
- Roche K.C.
- Johnston M.J.
- Wang F.
- Wang Y.
- Attayek P.J.
- Balowski J.
- Liu X.F.
- Laurenza R.J.
- Gaynor L.T.
- Sims C.E.
- Galanko J.A.
- Li L.
- Allbritton N.L.
- Magness S.T.
- Gracz A.D.
- Williamson I.A.
- Roche K.C.
- Johnston M.J.
- Wang F.
- Wang Y.
- Attayek P.J.
- Balowski J.
- Liu X.F.
- Laurenza R.J.
- Gaynor L.T.
- Sims C.E.
- Galanko J.A.
- Li L.
- Allbritton N.L.
- Magness S.T.
Novel mAb Clone E5D10 Shows Low Expression Levels in the Stem Cell Zone

Combination of mAbs E5D10 and F5C12 Facilitates Isolation of Lgr5GFP or Bmi1GFP ISC Populations


- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.
Bmi1GFP Cells Within Spheroids Exist in a Stem State
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.

Plasticity Between Stem States Shown Using Novel mAbs
- Munoz J.
- Stange D.E.
- Schepers A.G.
- van de Wetering M.
- Koo B.K.
- Itzkovitz S.
- Volckmann R.
- Kung K.S.
- Koster J.
- Radulescu S.
- Myant K.
- Versteeg R.
- Sansom O.J.
- van Es J.H.
- Barker N.
- van Oudenaarden A.
- Mohammed S.
- Heck A.J.
- Clevers H.

Discussion
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.
- de Lau W.
- Barker N.
- Low T.Y.
- Koo B.K.
- Li V.S.
- Teunissen H.
- Kujala P.
- Haegebarth A.
- Peters P.J.
- van de Wetering M.
- Stange D.E.
- van Es J.E.
- Guardavaccaro D.
- Schasfoort R.B.
- Mohri Y.
- Nishimori K.
- Mohammed S.
- Heck A.J.
- Clevers H.
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.
- Yan K.S.
- Gevaert O.
- Zheng G.X.Y.
- Anchang B.
- Probert C.S.
- Larkin K.A.
- Davies P.S.
- Cheng Z.F.
- Kaddis J.S.
- Han A.
- Roelf K.
- Calderon R.I.
- Cynn E.
- Hu X.
- Mandleywala K.
- Wilhelmy J.
- Grimes S.M.
- Corney D.C.
- Boutet S.C.
- Terry J.M.
- Belgrader P.
- Ziraldo S.B.
- Mikkelsen T.S.
- Wang F.
- von Furstenberg R.J.
- Smith N.R.
- Chandrakesan P.
- May R.
- Chrissy M.A.S.
- Jain R.
- Cartwright C.A.
- Niland J.C.
- Hong Y.K.
- Carrington J.
- Breault D.T.
- Epstein J.
- Houchen C.W.
- Lynch J.P.
- Martin M.G.
- Plevritis S.K.
- Curtis C.
- Ji H.P.
- Li L.
- Henning S.J.
- Wong M.H.
- Kuo C.J.

Acknowledgments
References
- Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.Nature. 2011; 469: 415-418
- Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells.Gastroenterology. 2012; 143: 1518-1529 e7
- Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche.Cell Mol Gastroenterol Hepatol. 2016; 2: 175-188
- Identification of stem cells in small intestine and colon by marker gene Lgr5.Nature. 2007; 449: 1003-1007
- Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells.Proc Natl Acad Sci U S A. 2011; 108: 179-184
- The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor.Cell. 2012; 149: 146-158
- Bmi1 is expressed in vivo in intestinal stem cells.Nat Genet. 2008; 40: 915-920
- Interconversion between intestinal stem cell populations in distinct niches.Science. 2011; 334: 1420-1424
- Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele.EMBO J. 2014; 33: 2057-2068
- Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types.Am J Anat. 1974; 141: 537-561
- Continuous labelling studies on mouse skin and intestine.Cell Tissue Kinet. 1974; 7: 271-283
- Coexistence of quiescent and active adult stem cells in mammals.Science. 2010; 327: 542-545
- Biology of hematopoietic stem cells and progenitors: implications for clinical application.Annu Rev Immunol. 2003; 21: 759-806
- Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy.Stem Cell Rep. 2014; 3: 876-891
- Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells.Cell Stem Cell. 2017; 21: 65-77 e5
- A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable.Nature. 2011; 478: 255-259
- The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations.Proc Natl Acad Sci U S A. 2012; 109: 466-471
- Defining a stem cell hierarchy in the intestine: markers, caveats and controversies.J Physiol. 2016; 594: 4781-4790
- Intestinal label-retaining cells are secretory precursors expressing Lgr5.Nature. 2013; 495: 65-69
- Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters.Cell Stem Cell. 2016; 18: 203-213
- Dll1+ secretory progenitor cells revert to stem cells upon crypt damage.Nat Cell Biol. 2012; 14: 1099-1104
- Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity.Cell Stem Cell. 2017; 21: 78-90 e6
- Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265
- Cell adhesion molecule CD166/ALCAM functions within the crypt to orchestrate murine intestinal stem cell homeostasis.Cell Mol Gastroenterol Hepatol. 2017; 3: 389-409
- Bmi-1-green fluorescent protein-knock-in mice reveal the dynamic regulation of bmi-1 expression in normal and leukemic hematopoietic cells.Stem Cells. 2007; 25: 1635-1644
- A robust and high-throughput Cre reporting and characterization system for the whole mouse brain.Nat Neurosci. 2010; 13: 133-140
- Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.Mol Cell Endocrinol. 2011; 339: 144-150
- Subtractive immunization techniques for the production of monoclonal antibodies to rare antigens.Biotechniques. 1992; 12: 842-847
- Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract.Gastroenterology. 2010; 139: 2072-2082 e5
- A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells.Am J Physiol Gastrointest Liver Physiol. 2013; 305: G542-G551
- Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells.Am J Physiol Gastrointest Liver Physiol. 2011; 300: G409-G417
- Establishment of gastrointestinal epithelial organoids.Curr Protoc Mouse Biol. 2013; 3: 217-240
- A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis.Nat Cell Biol. 2015; 17: 340-349
- Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay.Gastroenterology. 2013; 145 (e1–e21): 383-395
- A nomenclature for intestinal in vitro cultures.Am J Physiol Gastrointest Liver Physiol. 2012; 302: G1359-G1363
- R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6.Proc Natl Acad Sci U S A. 2007; 104: 14700-14705
- Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling.Nature. 2011; 476: 293-297
- Mitogenic influence of human R-spondin1 on the intestinal epithelium.Science. 2005; 309: 1256-1259
- Single-molecule transcript counting of stem-cell markers in the mouse intestine.Nat Cell Biol. 2011; 14: 106-114
- The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4' cell markers.EMBO J. 2012; 31: 3079-3091
- Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer.Nature. 2015; 526: 715-718
- Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury.Cell Stem Cell. 2013; 13: 734-744
- Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium.Cell Rep. 2013; 5: 421-432
- Designer matrices for intestinal stem cell and organoid culture.Nature. 2016; 539: 560-564
Article info
Publication history
Footnotes
Author contributions Nicholas R. Smith was responsible for the conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing/editing, and final approval of the manuscript; John R. Swain was responsible for the conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing/editing, and final approval of manuscript; Paige S. Davies was responsible for the collection and/or assembly of data and final approval of the manuscript; Alexandra C. Gallagher was responsible for the collection of data and final approval of the manuscript; Michael S. Parappilly was responsible for the collection and/or assembly of data and final approval of the manuscript; Catherine Z. Beach was responsible for the collection and/or assembly of data and final approval of the manuscript; Philip R. Streeter was responsible for the interpretation of data and final approval of the manuscript; Ian A. Williamson was responsible for the collection of data and final approval of the manuscript; Scott T. Magness was responsible for the collection of data and final approval of the manuscript; and Melissa H. Wong was responsible for the conception and design, financial support, data analysis and interpretation, manuscript writing, and final approval of manuscript.
Conflicts of interest The authors disclose no conflicts.
Funding Supported by U01DK085525 (M.H.W.); CA106195-09, the Medical Research Foundation of Oregon ECI Award, and Oregon Health & Science University Knight Cancer Institute Research Development Award (N.R.S.); and R01 DK091427, and P30 DK34987, (S.T.M.), and P30 CA069533 from the OHSU Knight Cancer Institute.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Decrypting the Crypt: Novel Monoclonal Antibodies to Identify Intestinal Stem Cell PopulationsCellular and Molecular Gastroenterology and HepatologyVol. 6Issue 1
- PreviewDespite extensive efforts to fully characterize and identify the stem cell pools at the base of the small intestinal crypts, there remains controversy over the precise identity of these cells. The active crypt base columnar cell, labeled by leucine-rich G-protein–coupled receptor 5 (Lgr5), is the workhorse of epithelial renewal, but other cell populations are able to contribute to this renewal, particularly after intestinal damage. The accurate labeling of these additional stem cell populations is plagued by the small numbers of these cells and the plasticity of the cell itself.
- Full-Text
- Preview