Keywords
Abbreviations used in this paper:
BMP (bone morphogenetic protein), e (embryonic day), ECL (enterochromaffin-like), ENS (enteric nervous system), ENCC (enteric neural crest cell), GI (gastrointestinal), HDGC (hereditary diffuse gastric cancer), HGO (human gastric organoid), hPSC (human pluripotent stem cell), PSC (pluripotent stem cell), Shh (Sonic hedgehog), 3-D (3-dimensional)
Stomach Morphology Across Species
Gastric Epithelium and Mesenchyme
Epithelial Function and Development
- Choi E.
- Lantz T.L.
- Vlacich G.
- Keeley T.M.
- Samuelson L.C.
- Coffey R.J.
- Goldenring J.R.
- Powell A.E.
- Stange D.E.
- Koo B.K.
- Huch M.
- Sibbel G.
- Basak O.
- Lyubimova A.
- Kujala P.
- Bartfeld S.
- Koster J.
- Geahlen J.H.
- Peters P.J.
- van Es J.H.
- van de Wetering M.
- Mills J.C.
- Clevers H.
- Barker N.
- Huch M.
- Kujala P.
- van de Wetering M.
- Snippert H.J.
- van Es J.H.
- Sato T.
- Stange D.E.
- Begthel H.
- van den Born M.
- Danenberg E.
- van den Brink S.
- Korving J.
- Abo A.
- Peters P.J.
- Wright N.
- Poulsom R.
- Clevers H.
- Hayakawa Y.
- Ariyama H.
- Stancikova J.
- Sakitani K.
- Asfaha S.
- Renz B.W.
- Dubeykovskaya Z.A.
- Shibata W.
- Wang H.
- Westphalen C.B.
- Chen X.
- Takemoto Y.
- Kim W.
- Khurana S.S.
- Tailor Y.
- Nagar K.
- Tomita H.
- Hara A.
- Sepulveda A.R.
- Setlik W.
- Gershon M.D.
- Saha S.
- Ding L.
- Shen Z.
- Fox J.G.
- Friedman R.A.
- Konieczny S.F.
- Worthley D.L.
- Korinek V.
- Wang T.C.
Mesenchymal Function and Development
Epithelial-Mesenchymal Interactions
Early regional patterning and Wnt signaling
Epithelial Shh signaling
Mesenchymal Bmp signaling
Additional mesenchymal transcription factors
Congenital Defects and Disease
Pyloric Sphincter Development
H pylori and Our Limitations of Understanding Gastric Disease
Generating Gastric Tissue In Vitro
Deriving Definitive Endoderm

Patterning the Endoderm Along the A-P Axis
3-D Morphogenesis and Generation of Fundic Organoids
Organoid Epithelium and Mesenchyme
Current and Future Applications of HGOS
Organoids in Basic Research
Organoid Uses in Personalized and Regenerative Medicine
Gene editing and disease modeling
Organoids for disease diagnostics and therapy
Tissue engineering
- Workman M.J.
- Mahe M.M.
- Trisno S.
- Poling H.M.
- Watson C.L.
- Sundaram N.
- Chang C.F.
- Schiesser J.
- Aubert P.
- Stanley E.G.
- Elefanty A.G.
- Miyaoka Y.
- Mandegar M.A.
- Conklin B.R.
- Neunlist M.
- Brugmann S.A.
- Helmrath M.A.
- Wells J.M.
Drug testing and discovery
- Carr D.F.
- Ayehunie S.
- Davies A.
- Duckworth C.A.
- French S.
- Hall N.
- Hussain S.
- Mellor H.R.
- Norris A.
- Park B.K.
- Penrose A.
- Pritchard D.M.
- Probert C.S.
- Ramaiah S.
- Sadler C.
- Schmitt M.
- Shaw A.
- Sidaway J.E.
- Vries R.G.
- Wagoner M.
- Pirmohamed M.
Engineering Additional Complexity to Enhance Functionality
- Workman M.J.
- Mahe M.M.
- Trisno S.
- Poling H.M.
- Watson C.L.
- Sundaram N.
- Chang C.F.
- Schiesser J.
- Aubert P.
- Stanley E.G.
- Elefanty A.G.
- Miyaoka Y.
- Mandegar M.A.
- Conklin B.R.
- Neunlist M.
- Brugmann S.A.
- Helmrath M.A.
- Wells J.M.
Conclusions
Acknowledgment
References
- Stomach organ and cell lineage differentiation: from embryogenesis to adult homeostasis.Cell Mol Gastroenterol Hepatol. 2016; 2: 546-559
- Stomach development, stem cells and disease.Development. 2016; 143: 554-565
- Mechanisms of embryonic stomach development.Semin Cell Dev Biol. 2017; 66: 36-42
- Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum.Gut. 2014; 63: 1711-1720
- Modeling mouse and human development using organoid cultures.Development. 2015; 142: 3113-3125
- Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.Nature. 2014; 516: 400-404
- Organoid models of human gastrointestinal development and disease.Gastroenterology. 2016; 150: 1098-1112
- Gastric epithelial stem cells.Gastroenterology. 2011; 140: 412-424
- Gastric mesenchymal myofibroblasts maintain stem cell activity and proliferation of murine gastric epithelium in vitro.Am J Pathol. 2015; 185: 798-807
- Identification of stem cells in the epithelium of the stomach corpus and antrum of mice.Gastroenterology. 2017; 152: 218-231.e14
- Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell.Anat Rec. 1993; 236: 259-279
- Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice.Cell Stem Cell. 2011; 9: 317-329
- Sox2 suppresses gastric tumorigenesis in mice.Cell Rep. 2016; 16: 1929-1941
- Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis.Nature. 2017; 548: 451-455
- Lrig1+ gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach.Gut. 2017; (Epub 2017/08/18. https://doi.org/10.1136/gutjnl-2017-313874. PubMed PMID: 28814482)
- Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium.Cell. 2013; 155: 357-368
- Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro.Cell Stem Cell. 2010; 6: 25-36
- Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach.Nat Cell Biol. 2017; 19: 774-786
- Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche.Cancer Cell. 2015; 28: 800-814
- Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium.EMBO J. 2002; 21: 6338-6347
- Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity.Genes Dev. 2002; 16: 1488-1497
- Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.Compr Physiol. 2014; 4: 1339-1368
- The vagus nerve in appetite regulation, mood, and intestinal inflammation.Gastroenterology. 2017; 152: 730-744
- Ghrelin increases vagally mediated gastric activity by central sites of action.Neurogastroenterol Motil. 2014; 26: 272-282
- Specific hunger- and satiety-induced tuning of guinea pig enteric nerve activity.J Physiol. 2012; 590: 4321-4333
- Histamine mediates the stimulatory action of ghrelin on acid secretion in rat stomach.Dig Dis Sci. 2006; 51: 1313-1321
- Effects of ghrelin on interdigestive contractions of the rat gastrointestinal tract.World J Gastroenterol. 2008; 14: 6299-6302
- Role of corticosterone in the murine enteric nervous system during fasting.Am J Physiol Gastrointest Liver Physiol. 2014; 307: G905-G913
- The vagus regulates histamine mobilization from rat stomach ECL cells by controlling their sensitivity to gastrin.J Physiol. 2005; 564: 895-905
- Motilin stimulates gastric acid secretion in coordination with ghrelin in suncus murinus.PLoS One. 2015; 10: e0131554
- Stomach regional specification requires Hoxa5-driven mesenchymal-epithelial signaling.Development. 2002; 129: 4075-4087
- Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration.Cell Mol Life Sci. 2015; 72: 3883-3896
- The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling.Dev Cell. 2005; 8: 611-622
- Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.Dev Biol. 2015; 405: 21-32
- Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development.Dev Dyn. 2005; 234: 312-322
- Molecular etiology of gut malformations and diseases.Am J Med Genet. 2002; 115: 221-230
- Enteric nervous system patterning in the avian hindgut.Dev Dyn. 2004; 229: 708-712
- Endogenous patterns of BMP signaling during early chick development.Dev Biol. 2002; 244: 44-65
- BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system.Mech Dev. 2005; 122: 821-833
- de Santa Barbara P. SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals.Development. 2004; 131: 3795-3804
- Gizzard formation and the role of Bapx1.Dev Biol. 2001; 231: 164-174
- Hh pathway expression in human gut tissues and in inflammatory gut diseases.Lab Invest. 2004; 84: 1631-1642
- Epithelial-mesenchymal signaling during the regionalization of the chick gut.Development. 1998; 125: 2791-2801
- Molecular mechanisms of development of the gastrointestinal tract.Dev Dyn. 2000; 219: 109-120
- Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary.Development. 2000; 127: 3671-3681
- Development. Epithelial cell differentiation–a Mather of choice.Science. 2001; 294: 2115-2116
- Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract.Gut. 2002; 51: 628-633
- Wnt/beta-catenin promotes gastric fundus specification in mice and humans.Nature. 2017; 541: 182-187
- Conditional expression of Wnt9b in Six2-positive cells disrupts stomach and kidney function.PLoS One. 2012; 7: e43098
- Roles for Nkx2–5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments.Am J Physiol Gastrointest Liver Physiol. 2014; 307: G430-G436
- Six2 activity is required for the formation of the mammalian pyloric sphincter.Dev Biol. 2009; 334: 409-417
- Sox9 and Nkx2.5 determine the pyloric sphincter epithelium under the control of BMP signaling.Dev Biol. 2005; 279: 481-490
- Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3.Gastroenterology. 2014; 146: 157-165.e10
- LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3.BMC Biol. 2014; 12: 25
- Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract.Development. 2010; 137: 1721-1729
- Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix.Development. 2016; 143: 264-275
- Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.Development. 2015; 142: 331-342
- BMP signalling specifies the pyloric sphincter.Nature. 1999; 402: 748-749
- Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut.Development. 1995; 121: 3163-3174
- BMPs are necessary for stomach gland formation in the chicken embryo: a study using virally induced BMP-2 and Noggin expression.Development. 2000; 127: 981-988
- MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells.Curr Biol. 1997; 7: 440-450
- Postmigratory enteric and sympathetic neural precursors share common, developmentally regulated, responses to BMP2.Dev Biol. 2000; 227: 1-11
- The role of Nkx3.2 in chondrogenesis.Front Biol (Beijing). 2014; 9: 376-381
- The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen.Development. 1999; 126: 5699-5711
- Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori.Nat Rev Microbiol. 2013; 11: 385-399
- Pathogenesis of Helicobacter pylori infection.Clin Microbiol Rev. 2006; 19: 449-490
- Helicobacter pylori infection and the development of gastric cancer.N Engl J Med. 2001; 345: 784-789
- The prevalence of Helicobacter pylori in peptic ulcer disease.Aliment Pharmacol Ther. 1995; 9: 59-69
- The gastric transitional zones: neglected links between gastroduodenal pathology and helicobacter ecology.Gastroenterology. 1999; 116: 1217-1229
- Animal models of Helicobacter pylori infection and disease.Microbes Infect. 2003; 5: 741-748
- Vertebrate endoderm development and organ formation.Annu Rev Cell Dev Biol. 2009; 25: 221-251
- Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.Nature. 2011; 470: 105-109
- How to make an intestine.Development. 2014; 141: 752-760
- Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate.Nature. 1990; 347: 391-394
- Nodal signaling: developmental roles and regulation.Development. 2007; 134: 1023-1034
- Mode of action of VegT in mesoderm and endoderm formation.Development. 1999; 126: 4903-4911
- Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation.Development. 2002; 129: 275-286
- The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4.Dev Cell. 2006; 11: 313-323
- Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish.BMC Dev Biol. 2007; 7: 22
- Efficient differentiation of human embryonic stem cells to definitive endoderm.Nat Biotechnol. 2005; 23: 1534-1541
- Generating human intestinal tissues from pluripotent stem cells to study development and disease.EMBO J. 2015; 34: 1149-1163
- Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development.Development. 2007; 134: 2207-2217
- The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis.Development. 1998; 125: 3015-3025
- Cdx4 is required in the endoderm to localize the pancreas and limit beta-cell number.Development. 2008; 135: 919-929
- The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation.Development. 2000; 127: 2433-2445
- Cdx2 is essential for axial elongation in mouse development.Proc Natl Acad Sci U S A. 2004; 101: 7641-7645
- Anterior-posterior patterning of definitive endoderm generated from human embryonic stem cells depends on the differential signaling of retinoic acid, Wnt-, and BMP-signaling.Stem Cell. 2016; 34: 2635-2647
- Genomic integration of Wnt/beta-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs.Development. 2017; 144: 1283-1295
- Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives.Dev Biol. 2006; 297: 433-445
- A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer.Dev Biol. 2011; 351: 297-310
- Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish.Development. 2017; 144: 958-962
- CRISPR/Cas9 for genome editing: progress, implications and challenges.Hum Mol Genet. 2014; 23: R40-R46
- Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell. 2007; 131: 861-872
- Stem cells: the new “model organism”.Mol Biol Cell. 2017; 28: 1409-1411
- An in vivo model of human small intestine using pluripotent stem cells.Nat Med. 2014; 20: 1310-1314
- Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system.Nat Med. 2017; 23: 49-59
- Towards better models and mechanistic biomarkers for drug-induced gastrointestinal injury.Pharmacol Ther. 2017; 172: 181-194
- Building additional complexity to in vitro-derived intestinal tissues.Stem Cell Res Ther. 2013; 4: S1
- Generation of gastrointestinal organoids from human pluripotent stem cells.Methods Mol Biol. 2017; 1597: 167-177
- hPSC-derived lung and intestinal organoids as models of human fetal tissue.Dev Biol. 2016; 420: 230-238
- Vascularized and functional human liver from an iPSC-derived organ bud transplant.Nature. 2013; 499: 481-484
Article info
Publication history
Footnotes
Author contributions Alexandra K. Eicher was responsible for major drafting of the manuscript; H. Matthew Berns was responsible for minor drafting and editing of the manuscript; and James M. Wells provided critical revision for intellectual content and obtained funding.
Conflicts of interest The authors disclose no conflicts.
Funding Supported by National Institutes of Health grants R01DK092456, U19AI116491, U18EB021780, and U01DK103117 (J.M.W., A.K.E., and H.M.B.).
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy