Keywords
Abbreviations used in this paper:
HBGA (histo-blood group antigen), IFN (interferon), IL (interleukin), 3D (three-dimensional)
Organization of the Small Intestine
Engineered Human Gastrointestinal Tissue
- Saxena K.
- Blutt S.E.
- Ettayebi K.
- Zeng X.L.
- Broughman J.R.
- Crawford S.E.
- Karandikar U.C.
- Sastri N.P.
- Conner M.E.
- Opekun A.R.
- Graham D.Y.
- Qureshi W.
- Sherman V.
- Foulke-Abel J.
- In J.
- Kovbasnjuk O.
- Zachos N.C.
- Donowitz M.
- Estes M.K.
- Yilmaz O.H.
- Katajisto P.
- Lamming D.W.
- Gultekin Y.
- Bauer-Rowe K.E.
- Sengupta S.
- Birsoy K.
- Dursun A.
- Yilmaz V.O.
- Selig M.
- Nielsen G.P.
- Mino-Kenudson M.
- Zukerberg L.R.
- Bhan A.K.
- Deshpande V.
- Sabatini D.M.
Small Intestinal Organoids
- Finkbeiner S.R.
- Hill D.R.
- Altheim C.H.
- Dedhia P.H.
- Taylor M.J.
- Tsai Y.H.
- Chin A.M.
- Mahe M.M.
- Watson C.L.
- Freeman J.J.
- Nattiv R.
- Thomson M.
- Klein O.D.
- Shroyer N.F.
- Helmrath M.A.
- Teitelbaum D.H.
- Dempsey P.J.
- Spence J.R.
- Finkbeiner S.R.
- Hill D.R.
- Altheim C.H.
- Dedhia P.H.
- Taylor M.J.
- Tsai Y.H.
- Chin A.M.
- Mahe M.M.
- Watson C.L.
- Freeman J.J.
- Nattiv R.
- Thomson M.
- Klein O.D.
- Shroyer N.F.
- Helmrath M.A.
- Teitelbaum D.H.
- Dempsey P.J.
- Spence J.R.
Small Intestinal Enteroids
- Dekkers J.F.
- Wiegerinck C.L.
- de Jonge H.R.
- Bronsveld I.
- Janssens H.M.
- de Winter-de Groot K.M.
- Brandsma A.M.
- de Jong N.W.
- Bijvelds M.J.
- Scholte B.J.
- Nieuwenhuis E.E.
- van den Brink S.
- Clevers H.
- van der Ent C.K.
- Middendorp S.
- Beekman J.M.
Using Gastrointestinal Organoids and Enteroids to Study Host-Microbial Interactions
Microbiome
- Zelante T.
- Iannitti R.G.
- Cunha C.
- De Luca A.
- Giovannini G.
- Pieraccini G.
- Zecchi R.
- D'Angelo C.
- Massi-Benedetti C.
- Fallarino F.
- Carvalho A.
- Puccetti P.
- Romani L.
- Buffie C.G.
- Bucci V.
- Stein R.R.
- McKenney P.T.
- Ling L.
- Gobourne A.
- No D.
- Liu H.
- Kinnebrew M.
- Viale A.
- Littmann E.
- van den Brink M.R.
- Jenq R.R.
- Taur Y.
- Sander C.
- Cross J.R.
- Toussaint N.C.
- Xavier J.B.
- Pamer E.G.
- Buffie C.G.
- Bucci V.
- Stein R.R.
- McKenney P.T.
- Ling L.
- Gobourne A.
- No D.
- Liu H.
- Kinnebrew M.
- Viale A.
- Littmann E.
- van den Brink M.R.
- Jenq R.R.
- Taur Y.
- Sander C.
- Cross J.R.
- Toussaint N.C.
- Xavier J.B.
- Pamer E.G.
Pathogens
- Saxena K.
- Blutt S.E.
- Ettayebi K.
- Zeng X.L.
- Broughman J.R.
- Crawford S.E.
- Karandikar U.C.
- Sastri N.P.
- Conner M.E.
- Opekun A.R.
- Graham D.Y.
- Qureshi W.
- Sherman V.
- Foulke-Abel J.
- In J.
- Kovbasnjuk O.
- Zachos N.C.
- Donowitz M.
- Estes M.K.
- Yin Y.
- Bijvelds M.
- Dang W.
- Xu L.
- van der Eijk A.A.
- Knipping K.
- Tuysuz N.
- Dekkers J.F.
- Wang Y.
- de J.J.
- Sprengers D.
- van der Laan L.J.
- Beekman J.M.
- Ten B.D.
- Metselaar H.J.
- de J.H.
- Koopmans M.P.
- Peppelenbosch M.P.
- Pan Q.
- Saxena K.
- Simon L.M.
- Zeng X.L.
- Blutt S.E.
- Crawford S.E.
- Sastri N.P.
- Karandikar U.C.
- Ajami N.J.
- Zachos N.C.
- Kovbasnjuk O.
- Donowitz M.
- Conner M.E.
- Shaw C.A.
- Estes M.K.
- Saxena K.
- Blutt S.E.
- Ettayebi K.
- Zeng X.L.
- Broughman J.R.
- Crawford S.E.
- Karandikar U.C.
- Sastri N.P.
- Conner M.E.
- Opekun A.R.
- Graham D.Y.
- Qureshi W.
- Sherman V.
- Foulke-Abel J.
- In J.
- Kovbasnjuk O.
- Zachos N.C.
- Donowitz M.
- Estes M.K.
- Saxena K.
- Blutt S.E.
- Ettayebi K.
- Zeng X.L.
- Broughman J.R.
- Crawford S.E.
- Karandikar U.C.
- Sastri N.P.
- Conner M.E.
- Opekun A.R.
- Graham D.Y.
- Qureshi W.
- Sherman V.
- Foulke-Abel J.
- In J.
- Kovbasnjuk O.
- Zachos N.C.
- Donowitz M.
- Estes M.K.
- Saxena K.
- Simon L.M.
- Zeng X.L.
- Blutt S.E.
- Crawford S.E.
- Sastri N.P.
- Karandikar U.C.
- Ajami N.J.
- Zachos N.C.
- Kovbasnjuk O.
- Donowitz M.
- Conner M.E.
- Shaw C.A.
- Estes M.K.
- Yin Y.
- Bijvelds M.
- Dang W.
- Xu L.
- van der Eijk A.A.
- Knipping K.
- Tuysuz N.
- Dekkers J.F.
- Wang Y.
- de J.J.
- Sprengers D.
- van der Laan L.J.
- Beekman J.M.
- Ten B.D.
- Metselaar H.J.
- de J.H.
- Koopmans M.P.
- Peppelenbosch M.P.
- Pan Q.
- Yin Y.
- Bijvelds M.
- Dang W.
- Xu L.
- van der Eijk A.A.
- Knipping K.
- Tuysuz N.
- Dekkers J.F.
- Wang Y.
- de J.J.
- Sprengers D.
- van der Laan L.J.
- Beekman J.M.
- Ten B.D.
- Metselaar H.J.
- de J.H.
- Koopmans M.P.
- Peppelenbosch M.P.
- Pan Q.
- Yin Y.
- Wang Y.
- Dang W.
- Xu L.
- Su J.
- Zhou X.
- Wang W.
- Felczak K.
- van der Laan L.J.
- Pankiewicz K.W.
- van der Eijk A.A.
- Bijvelds M.
- Sprengers D.
- de Jonge H.
- Koopmans M.P.
- Metselaar H.J.
- Peppelenbosch M.P.
- Pan Q.
Virus | Enteroid type | Strains | Cells infected | Responses | Innate responses | Reference |
---|---|---|---|---|---|---|
Rotavirus | HIOs | Human rotavirus replication | Enterocytes, mesenchymal cells | 49 | ||
Rotavirus | Differentiated HIEs from adults, all small intestinal segments in 3D cultures | Human rotavirus replicates more efficiently than animal rotavirus | Enterocytes, enteroendocrine cells; not stem cells | Swelling induced by viral infection and enterotoxin treatment | Predominant type III IFN response | 6 , 11 ,
Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol. 2015; 90: 43-56 15 |
Rotavirus | HIEs from adults | Human rotavirus replication | Antiviral testing | Selected innate response genes induced | 50 ,
Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res. 2015; 123: 120-131 53
Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antiviral Res. 2016; 133: 41-49 | |
Human norovirus | Differentiated HIEs from adults, all small intestinal segments on monolayers | Multiple human norovirus strains replicate; strain-specific requirements for replication; some require bile | Enterocytes; not stem cells | Inactivation and neutralization tested | Host-specific susceptibility to infection based on host HBGA expression | 6 , 30 |
Enteroviruses | HIEs from human fetal small intestine in 3D cultures | Strain-specific differences in relative replication efficiency with EV11 and CBV high and EV71 low | Strain-specific responses | 56 | ||
Echovirus 11 | Good infections; cpe; cell death; mislocalization of occludin; infectious virus produced in levels similar to Caco-2 cells | Enteroendocrine cells; not goblet cells | Differential induction of 350 transcripts; cytokines, chemokines; IFN-stimulated genes | 56 | ||
Coxsackievirus B | Good infections by immunofluorescence and viral RNA | Differential induction of 13 transcripts | 56 | |||
Enterovirus 71 | Lower levels of replication | No significant induction of transcripts detected | 56 |
- Wang X.
- Yamamoto Y.
- Wilson L.H.
- Zhang T.
- Howitt B.E.
- Farrow M.A.
- Kern F.
- Ning G.
- Hong Y.
- Khor C.C.
- Chevalier B.
- Bertrand D.
- Wu L.
- Nagarajan N.
- Sylvester F.A.
- Hyams J.S.
- Devers T.
- Bronson R.
- Lacy D.B.
- Ho K.Y.
- Crum C.P.
- McKeon F.
- Xian W.
Challenges to Existing Engineered Gastrointestinal Tissues

- Workman M.J.
- Mahe M.M.
- Trisno S.
- Poling H.M.
- Watson C.L.
- Sundaram N.
- Chang C.F.
- Schiesser J.
- Aubert P.
- Stanley E.G.
- Elefanty A.G.
- Miyaoka Y.
- Mandegar M.A.
- Conklin B.R.
- Neunlist M.
- Brugmann S.A.
- Helmrath M.A.
- Wells J.M.
- Saxena K.
- Simon L.M.
- Zeng X.L.
- Blutt S.E.
- Crawford S.E.
- Sastri N.P.
- Karandikar U.C.
- Ajami N.J.
- Zachos N.C.
- Kovbasnjuk O.
- Donowitz M.
- Conner M.E.
- Shaw C.A.
- Estes M.K.
Summary
References
- Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265
- Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.Gastroenterology. 2011; 141: 1762-1772
- Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.Nature. 2011; 470: 105-109
- A nomenclature for intestinal in vitro cultures.Am J Physiol Gastrointest Liver Physiol. 2012; 302: G1359-G1363
- Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.Nature. 2011; 469: 415-418
- Human intestinal enteroids: new models to study gastrointestinal virus infections.Methods Mol Biol. 2017; 15: 1-19
- Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts”.Mol Cell Biol. 2012; 32: 3639-3647
- Development of functional microfold (M) cells from intestinal stem cells in primary human enteroids.PLoS One. 2016; 11: e0148216
- Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells.Cell Stem Cell. 2017; 20: 177-190
- Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine.Am J Physiol Cell Physiol. 2012; 302: C1492-C1503
- Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology.J Virol. 2015; 90: 43-56
- A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.Biomaterials. 2017; 128: 44-55
- Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.Cell Stem Cell. 2013; 13: 653-658
- Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology.Gastroenterology. 2016; 150: 638-649
- Controlled gene expression in primary Lgr5 organoid cultures.Nat Methods. 2011; 9: 81-83
- mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.Nature. 2012; 486: 490-495
- An in vivo model of human small intestine using pluripotent stem cells.Nat Med. 2014; 20: 1310-1314
- Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.Nature. 2014; 516: 400-404
- Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis.Nature. 2015; 526: 564-568
- Generating human intestinal tissue from pluripotent stem cells in vitro.Nat Protoc. 2011; 6: 1920-1928
- Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo.Stem Cell Reports. 2015; 4: 1140-1155
- hPSC-derived lung and intestinal organoids as models of human fetal tissue.Dev Biol. 2016; 420: 230-238
- In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development.Development. 2017; 144: 1045-1055
- Adult stem cells in the small intestine are intrinsically programmed with their location-specific function.Stem Cells. 2014; 32: 1083-1091
- A functional CFTR assay using primary cystic fibrosis intestinal organoids.Nat Med. 2013; 19: 939-945
- Disease modeling in stem cell-derived 3D organoid systems.Trends Mol Med. 2017; 23: 393-410
- Organoids as model for infectious diseases: culture of human and murine stomach organoids and microinjection of Helicobacter pylori.J Vis Exp. 2015; 105: 53359
- Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis.Mucosal Immunol. 2014; 7: 818-828
- Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays.Gut. 2015; 64: 911-920
- Replication of human noroviruses in stem cell-derived human enteroids.Science. 2016; 353: 1387-1393
- Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids.Cell Mol Gastroenterol Hepatol. 2016; 2: 48-62
- The gut microbiota in immune-mediated inflammatory diseases.Front Microbiol. 2016; 7: 1081
- An obesity-associated gut microbiome with increased capacity for energy harvest.Nature. 2006; 444: 1027-1031
- Quantitative imaging of gut microbiota spatial organization.Cell Host Microbe. 2015; 18: 478-488
- In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria.Nat Med. 2015; 21: 1091-1100
- Host-gut microbiota metabolic interactions.Science. 2012; 336: 1262-1267
- Chemical communication in the gut: effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens.Anaerobe. 2015; 34: 106-115
- The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation.Proc Natl Acad Sci. 2010; 107: 228-233
- Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22.Immunity. 2013; 39: 372-385
- Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile.Nature. 2015; 517: 205-208
- Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota.Gastroenterology. 2014; 147: 1055-1063
- The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine.Science. 2011; 334: 255-258
- Of mice and microflora: considerations for genetically engineered mice.Vet Pathol. 2012; 49: 44-63
- Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs).Microbiome. 2015; 3: 42
- Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function.Infect Immun. 2015; 83: 138-145
- Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli.PLoS One. 2017; 12: e0178966
- The burden of selected digestive diseases in the United States.Gastroenterology. 2002; 122: 1500-1511
- Rotaviruses: from pathogenesis to vaccination.Gastroenterology. 2009; 136: 1939-1951
- Stem cell-derived human intestinal organoidsas an infection model for rotaviruses.MBio. 2012; 3 (e00159-12)
- Modeling rotavirus infection and antiviral therapy using primary intestinal organoids.Antiviral Res. 2015; 123: 120-131
- A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection.Proc Natl Acad Sci. 2017; 114: E570-E579
- Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen.Nature. 2012; 485: 256-259
- Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development.Antiviral Res. 2016; 133: 41-49
- Rotavirus in organ transplantation: drug-virus-host interactions.Am J Transplant. 2015; 15: 585-593
- Prospects and challenges in the development of a norovirus vaccine.Clin Ther. 2017; 39: 1537-1549
- Enteroviruses infect human enteroids and induce antiviral signaling in a cell lineage-specific manner.Proc Natl Acad Sci. 2017; 114: 1672-1677
- Poliovirus type 1 enters the human host through intestinal M cells.Gastroenterology. 1990; 98: 56-58
- Interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells.Infect Immun. 2015; 83: 2926-2934
- Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells.Mucosal Immunol. 2015; 8: 403-413
- Intestinal enteroids model guanylate cyclase C-dependent secretion induced by heat-stable enterotoxins.Infect Immun. 2016; 84: 3083-3091
- Human Clostridium difficile infection: altered mucus production and composition.Am J Physiol Gastrointest Liver Physiol. 2015; 308: G510-G524
- Cloning and variation of ground state intestinal stem cells.Nature. 2015; 522: 173-178
- Blood group O-dependent cellular responses to cholera toxin: parallel clinical and epidemiological links to severe cholera.Am J Trop Med Hyg. 2016; 95: 440-443
- A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions.Sci Rep. 2017; 7: 45270
- The enteric nervous system and neurogastroenterology.Nat Rev Gastroenterol Hepatol. 2012; 9: 286-294
- Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system.Nat Med. 2017; 23: 49-59
- Physiologically relevant human tissue models for infectious diseases.Drug Discov Today. 2016; 21: 1540-1552
Article Info
Publication History
Footnotes
Conflicts of interest The authors disclose the following: M.K. Estes is named as an inventor on patents related to cloning of the Norwalk virus genome and has received consultant's fees from Takeda Vaccines, Inc. The remaining authors disclose no conflicts.
Funding Supported by grants U18-TR000552 , UH3-TR00003 , U19-AI116497 , RO1-AI080656 , U01-DK103168 , and P30-DK56338 from the National Institutes of Health and the Food Research Initiative Competitive grant 2011-68003-30395 from the U.S. Department of Agriculture, National Institute of Food and Agriculture .
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy